В завершение доклада доказывается вложение $W_I^2(\mathcal{E}) \subseteq IC_F^2(\mathcal{E})$ и обсуждаются условия, гарантирующие совпадение множества информационных α^2 -равновесий и представительного нечеткого α^2 -ядра модели экономического обмена с экстерналиями.

ЛИТЕРАТУРА

- 1. *Макаров В.Л., Васильев В.А.* Информационное равновесие. Существование // Экономика и математические методы. М., 2006. Т. 42, № 3. С. 31–52.
- Макаров В.Л., Васильев В.А. Информационное равновесие. Коалиционная стабильность // Экономика и математические методы. М., 2006. Т. 42, № 4. С. 50–63.

Васильев Валерий Александрович, Институт математики им. С.Л.Соболева СО РАН Россия, Новосибирск e-mail: vasilev@math.nsc.ru

Поступила в редакцию 10 мая 2007 г.

УСТОЙЧИВОСТЬ ПО ПАРАМЕТРУ РЕШЕНИЯ НЕЛИНЕЙНОГО УРАВНЕНИЯ С P-ЛАПЛАСИАНОМ 1

© А.А. Васильева

Пусть $\Omega \subset \mathbb{R}^n$ — область с липшицевой границей, (T,ρ) — метрическое пространство, $1 . Для каждого <math>t \in T, \, x \in \Omega, \, u \in \mathbb{R}$ положим $\Phi(t,x,u) = \int\limits_0^u F(t,x,v) \, dv$, где F имеет следующие свойства:

- 1. для любых $t \in T$, $x \in \Omega$ функция $F(t, x, \cdot)$ непрерывна и возрастает, F(t, x, 0) = 0;
- 2. если $n \geqslant p$, то существуют M > 0 и $1 < \alpha < \frac{np}{n-p}$ такие, что $|F(t, x, u)| \leqslant M(|u|^{\alpha-1}+1)$ и $|F(t_1, x, u) F(t_2, x, u)| \leqslant M|u|^{\alpha-1}\rho(t_1, t_2)$; если n < p, то существует непрерывная функция c(u) такая, что $F(t, x, u) \leqslant c(u)$ и $|F(t_1, x, u) F(t_2, x, u)| \leqslant c(u)\rho(t_1, t_2)$.

Пусть $\varphi:T \to \mathring{W}^1_p(\Omega)$ и $f:T \to (\mathring{W}^1_p(\Omega))^*$ липшицевы по t с константой L и

$$A:=\max\left\{\sup_{t\in T}\|\varphi(t)\|_{\mathring{W}^{1}_{p}(\Omega)},\ \sup_{t\in T}\|f(t)\|_{(\mathring{W}^{1}_{p}(\Omega))^{*}}\right\}<\infty.$$

 $^{^{1}}$ Работа выполнена при поддержке РФФИ (проект № 06-01-00160).

Обозначим $\langle g(t), h \rangle = \int\limits_{\Omega} F(t, x, \varphi(t, x)) h(x) \, dx + \langle f(t), h \rangle, \, h \in \mathring{W}^1_p(\Omega)$. Рассмотрим экстремальную задачу

$$\int_{\Omega} |\nabla (u(x) - \varphi(t, x))|^p dx + \int_{\Omega} \Phi(t, x, u) dx + \langle f(t), u \rangle \to \inf, \ u \in \mathring{W}_p^1(\Omega). \tag{1}$$

Решение этой экстремальной задачи является обобщенным решением уравнения

$$-\Delta_p(u-\varphi(t)) + F(t, x, u) + f(t) = 0.$$

Т е о р е м а 1. Пусть $\hat{u}(t)$ — решение задачи (1). Тогда для любого $t \in T$ существует r(t) > 0 такое, что неравенство $\|\hat{u}(s) - \hat{u}(t)\|_{\mathring{W}^1_p(\Omega)} \leqslant C \rho(s,t)^{\min \frac{1}{p-1},\frac{1}{3-p}}$ выполнено для любого $s \in B_{r(t)}(t)$, где $C = C(p,\Omega,L,\alpha,M,A,\|g(t)\|_{\mathring{W}^1_p(\Omega)^*})$ (если $n \geqslant p$), $C = C(p,\Omega,L,c(\cdot),A,\|g(t)\|_{\mathring{W}^1_p(\Omega)^*})$ (если n < p). Если $\inf_{t \in T} \|g(t)\|_{\mathring{W}^1_p(\Omega)^*} > 0$, то $\hat{u}(t)$ удовлетворяет условию Гельдера по t с показателем $\min \left(\frac{1}{p-1},\frac{1}{3-p}\right)$.

Васильева Анастасия Андреевна Московский государственный ун-т Россия, Москва e-mail: vasilyeva nastya@inbox.ru

Поступила в редакцию 10 мая 2007 г.

ИНДИКАТОРНЫЕ СИСТЕМЫ ДЛЯ ПРЕДСТАВЛЕНИЙ ВЫРОЖДЕННЫХ СЕРИЙ ЛИНЕЙНОЙ ГРУППЫ 1

© Н.Б. Волотова

Желобенко [1, гл. X] предъявил системы уравнений (unduxamophue cucmemu), выделяющие конечномерные представления комплексной линейной группы $SL(n, \mathbb{C})$, содержащиеся в основной nesupoxcdenhoù серии представлений этой группы.

Мы рассматриваем аналогичные представления, содержащиеся в вырожденной серии представлений группы $SL(n,\mathbb{R})$, отвечающей разбиению n=1+(n-1)+1 числа n. Они реализуются в многочленах на подгруппе Z нижних унипотентных блочных матриц. Заметим, что группа Z есть группа Гейзенберга размерности 2n-3.

 $^{^1}$ Работа выполнена при поддержке РФФИ (проекты №05-01-00074-а, №06-06-96318 р_центр_а, №07-01-91209 ЯФ_а), научной программы «Развитие Научного Потенциала Высшей Школы» РНП. 2.1.1.351 и темплана № 1.2.02.