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GAUSS ALGEBRAS AND QUANTUM GROUPS !
D. P. Zhelobenko
Peoples Friendship Russian University, Moscow, Russia

The category GA of Gauss algebras was introduced in [10] to study its objects by unified
methods. In particular, GA contains (up to an equivalence) the category SLA of symmetrizable
Lie algebras [3] and the category DJA of Drinfeld-Jimbo algebras [2]. The embedding SLA —
GA is given by the universal functor U : g — U(g). The language of GA is closely related to a
study of famous quantum groups [1]. The aim of this paper is to focus on some aspects of this
theory. A most of the text has a character of a review of relevant topics. Some new results are
contained in Sections 10-12.

1 Main definitions

Let A be a unital associative algebra over a field . We begin with the following preliminary
definitions (GT), (CA).

(GT) A triple of subalgebras N_, H, N of the algebra A is called Gauss triple if they contain
the unity of A and satisfy the following conditions:

() The algebra H normalizes Ny : HNy = N, H;

(B) The algebra A is equipped with Z-grading A, (n € Z) meaning that N_,H, N, is
generated (respectively) by homogeneous subsets e_, eg, e, consisting of elements z such that
degz < 0, degz = 0, degz > 0; () The algebra A admits a free (triangular) decomposition

(CA) The algebra (1) is called contragredient (CA) if A is equipped with an (anti) involution
z + &' such that h = k', A, = A_,, forany h€ H, n € Z.

Setting e = e, e’ = e_, we define the canonical bilinear form ¢ : A x A — H by the rule
o(z,y) = (z'y)o, ()

where z — z( is defined as a projection A — H parallel to the subspace T = €'A + Ae.
Notice that zg = z{, for any z € A. Hence the form (2) is symmetric. Moreover, its kernel
ker o contains the left ideal Ae. Hence ¢ is well defined on the quotient space

M = A/Ae. (3)

It is clear that M is a cyclic A-module generated by the vector 11 = 1+ Ae, such that el, = 0.
Using () (resp., (B8)), we obtain that M inherits a structure of A x H-bimodule (resp., Z-
grading) of A. Using (vy), we obtain an isomorphism of graded spaces

M=A1+=N_HI+QB, (4)

where B = N_H. It is clear also that the grading A, (resp., M,) is orthogonal with respect to
@. The space M is called the universal Verma module of A.
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The algebra A is called nondegenerate if the form ¢ is nondegenerate on M. Later we assume
(for simplicity) card e < co. Then we state the fundamental definition

(GA) The algebra (1) is called Gauss algebra (GA) if A is contragredient and nondegenerate.

It is easy to verify that the corresponding algebra H is commutative and without zero
divisors. The algebra H is called Cartan subalgebra of A. The algebras By = HNy are called
Borel subalgebras of A.

2 Main examples

We consider the following list of examples:

Weyl algebras A = W,

the algebras A = U(g), where g is SLA,

the quantum envelopes (DJA) A = U,(g), where g is symmetrizable Kac-Moody algebra
(SKMA),

superversions of these algebras,

an asymptotic version A = Dy(g) of U,(g) (Kashiwara algebras),

some examples of translator algebras (Section 11),

the Yangians Y = Y (g) (Section 12).

Details are given below.

(1) The classical Weyl algebra A = W, is a unital algebra (over C) generated by 2n elements
ei, fi (i =1,...,n) equipping with genetics [e;, e;] = [fi, f;] = 0 and
[ei’ f]] = 5ij’ (5)
where §;; is the Kronecker symbol (i,j = 1,...,n). Setting e = (e;), dege; = 1, €] = f;, we
obtain that A is GA with M = C|z], where z = (z1,...,Z5). The action of A on M is given by
the rule e; = 0; = 8/0xz;, fi =z; (i=1,...,n).
(2) We start from the known triangular decomposition of SLA: g =n_ ® ) @ ny, where §) is
a Cartan subalgebra of g [7]. Setting A = U(g) we obtain the corresponding decomposition (1),
where H = U(h), Nx = U(ny). The algebra A is generated by elements h € h and Chevalley

generators e; € ny, f; € n_ (i € I), where card I < oo. The obtained genetics is reduced to the
known weight and Serre conditions [7] together with relations

les, f] = i5h, (6)
where h; € h (i € I). Setting e = (e;), dege; = 1, €} = f;, we obtain that A is CA.

A study of the form ¢ is reduced to a study of a series of finite dimensional forms ¢, (n € Z4)
associated to ¢ [4]. Calculating the principal terms of these (polynomial) forms, we obtain 7]
that A is GA.

(3) The algebras A = U,(g) (where g is SKMA) are defined as quantum deformations of
their classical versions U(g). It is known (see [7], for example) that A is GA.

(4) The algebras A = D,(g) are introduced by M. Kashiwara [4] to a study of an asymptotic
behaviour of Uy(g). In other words, Dg(g) can be defined as a "twisted differential algebra” of
the quantum Serre algebra Sg(g) [8].

(5) A lot of superversions of the examples (1)—(4) can be easily defined. See [8] for example.

(6) A notion of translator algebras is discussed in Section 11. On occasion, these algebras
are GA.

(7) The Yangian A = Y(g) was introduced by V. Drinfeld [1], [2] as a unique quantum
deformation of the algebra U(g[t]), where g is simple (dimg < oo) and ¢ is an independent
variable. Sometimes g can be reductive. If g is simple, then A is GA (Section 12).
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Later we consider some questions of theory of representations of GA. As a preliminary, we
consider some special extensions of GA.

3 Projective extensions

Setting e = (e;), 1 € I, we define e” (n € Z, ) as the set of monomials €;,, ..., e;, (e® = 1). Using
(7), we obtain that A is contained in the Cartesian product

(e}
Aear = [ Be™, (7
n=0

where B = B_. Elements f € Agz can be considered as formal series with partial sums
fn=290fo+ ...+ d0fn, where df, € Be™. In this sence, A¢;; coincides with the projective limit of

spaces
Ap = AJAe™T, (8)

The algebra A is embedded in A.;; as the direct sum of subspaces Be™ (or the set of finite series
in Aext)-

Proposition 1 [7]. Aeyt is an algebra with respect to the multiplication of formal series. More-
over, let A be the greatest Z-graded subalgebra of Aegi. Then we have a chain of extensions

A C Aint C Aea:t- (9)

Now, let £(e) be the category of A-modules X locally nilpotent with respect to e : e"*lz =0
for any x € X and any n > no(z). Setting

fz = fpx for n > ne(x), (10)

we define the action of Agz; on X. In other words, the module X is equipped with the structure
of a A.ri-module.

Notice that L(e) is closed with respect to passing from a module to its submodule and its
quotient module. If X # 0 (in L(e)), then X® # 0. Here the subspace

X¢=kere={zr€X: ex=0} (11)

is called the eztremal subspace of X (with respect to e).
In particular, the module M (Section 1) belongs to £(e). The action of the algebra A (and
Aezt) on M is contained in the algebra

E(M) = EndyM (12)
(the commutant of the right action of H on M).

4 Perfect algebras

(PA) A Gauss algebra A is called perfect (PA) if H a field (an extension of F').

Theorem 1 [7] If A is perfect, then the action of A on M determines an isomorphism of
algebras

Ae:pt o~ E(M) (13)
Respectively, we obtain an isomorphism of graded algebras
Aing ~ Eint(M)a (14)

where E;n (M) is the greatest Z—graded subalgebra in E(M).
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Corollary 1 The action of A (and Aezt) on M is exact. Moreover, M is a simple A-module.
Corollary 2 There erists a unique element p € Ay satisfying equations
ep=pe =0 (15)
and normalyzing condition poo = 1. Moreover, p € Ay and
p’=p=7p, degp=0, (16)
with respect to the unique extension of x — z' onto Aint.

Proposition 2 The operator p projects any module X of category L(e) onto their extremal
subspace X€ parallel to €' X. In particular, we have

X=X@eX. 17)

Ezample. Setting A = W, we obtain that any f € End C[z] can be written uniquely as a
formal series:
o0
F= fona™o", (18)
m,n=0
where 0 = /0, satisfying the finiteness condition (¢): for any n, only a finite set of coefficients
Jmn € C can differ from zero.

Remark. Assume that A has no zero divisors. Then the equation p? = p, i.e. p(1 —p) =0
has only trivial solutions p = 0,1. Alternatively, the algebra A.;: admits a lot of projectors.
The projector p given in Corollary 2 is called the extremal projector of algebra A.

Consider an application of the projector p in the theory of A-—modules.

Proposition 3 If A is PA, then the category L(e) is monoidal, with unique simple object M.
In other words, any object X of L(e) has a form X =nM (n is a cardinal number).

Proof. For any module X in the category L(e), we set Xo = AX€. Assuming X # X, we
obtain (X/X)¢ # 0, i.e. there exists a vector € X such that z ¢ Y, ex C Y. Setting y = pz,
we obtain y C Y. Notice also that z — pz € Y. Hence z € Y (contradiction). As a result, we
have X =Y.

Moreover, Y is the vector sum of a family of cyclic modules Azg, where zq € X°. Notice
that the map al, — azg is correctly defined and determines an isomorphism Azg ~ M for
zo # 0 (because M is a simple A-module). Consequently, Y is the direct sum of submodules
Az, where g runs a basis of X¢. Hence X =Y =nM (n = dimX®). O

Ezamples:
1. M =Clz] for A=W,.
2. M = S4(g) for A = Dy(g).

5 Local extensions

(SA) A Gauss algebra A is called standard (SA) if A is invertible as H-bimodule, i.e. the left
and right actions of an element 0 # h € H in A is invertible. Hence A admits a structure of
H'-bimodule, where H' = FractH (the quotient field of H). Setting

A'=A®y H, (19)
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we obtain a natural structure of an algebra in (19). Namely, we set af = a ® f in (19) and
define fa by means of the normalyzing conditions («), see Section 1, in Ni. The algebra (19)
is called the local extension of A (with respect to H).

Notice that H' is the Cartan subalgebra of A’. Hence A’ is perfect. Consequently, any SA
has a perfect extension.

Notice that the extensions (7) and (19) are permutable. Respectively, we can define the
locally projective extension

;xt = (Aemt), = (A,)ezt-

In particular, any standard algebra A admits the extremal projector p € AL ,.

6 Cartan type algebras

(CTA) A Gauss algebra A is called the Cartan type algebra (CTA) if A admits a "fine” Q-
grading A, (¢ € Q), where @ is an ordered abelian subgroup in AutH. The condition z € A4,
means that

hx = zh, forany h € H, (20)

where p : h + h, means the action of 4 € AutH. Using the additive language for @), we obtain
a usual rule

AzA, C Axyy (21)

for any A\, 4 € Q. The term ”"fine” means that 4, C A
(Q — Z) is additive, n(0) = 0. Setting

Qi+ ={neQ: p20} (22)

we assume that the sets ep, e+ are homogeneous, @—degz = 0 (resp., < 0, > 0) for z € ¢
(resp., z € e—, z € e4). The Q-grading can be used (instead of Z-grading) in the definition
(GT), see Section 1.

For the case (CTA), the chain (9) can be completed as follows:

n(u)> Where the function p — n(u)

AC Afin C Aint C Aewty (23)

where Ay, is the greatest ()-graded subalgebra in Agy;. It is also clear that any CTA is SA.
Hence we have the corresponding chain in A”:

A C A, C Ajpy C ALy (24)
The indices in (23), (24) can be interpreted (respectively) as fine”, ”integer”, ”extensive” (and
also as ”final”, ”internal”, "external”).
Notice that the universal Verma module M’ for A’ can be written as follows:

M =AJAe=MeyH (25)

(a localized Verma module of A). Recall that the action of A’ on M’ determines an isomorphism
of algebras A, ~ E(M").

As usual, the algebra H consists of functions defined on some set A. Respectively, elements
f € AL, can be considered as "rational functions” on A, except of a subset o(f) consisting of

singularities of f.
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7 Category O(e)

Let A be CTA, X(H) be the set of characters of the algebra H. For any p € X(H) and any
H-module X we define the usual weight subspace

Xu{z =€ X : hz = pu(h)z, forany h € H}. (26)
Notice that the family (26) is linearly independent [7], and we have
A Xy C Xey, (27)

where epu(h) = p(he) in terms of (20). A module X is called H-diagonal if it is graded by the
subspaces (26), i.e.

for some subset P C X(H). Meaning (27), we assume that P is invariant with respect to @
(QP C P). It is essential that any submodule Y C X inherits the grading (28), i.e.

where Y, Y N X,.

Let us fix a @-submodule P C X(H). Let O(e) be the subcategory of L(e) consisting of
P-graded (H-diagonal) A-modules (28). It is clear that O(e) is closed with respect to passing
from a module to its submodules and quotient modules.

Ezample. For any A\ € X(H), we define the Verma module
M()\) =M ®5Cy, (30)

where B = B, C, is an one-dimensional B-module defined by the character A (extended trivially
on Ny ). Notice that
M) = A/T, = M/J,, (31)

where I is a left ideal of A generated by the set e and by the elements hy = h — A(h), Jy is a
submodule of M generated by the elements h) (h € H). Notice also that

M()) = Al = N1, (32)

where 1) =1 ®1 in (30), 1y = 1 + I, in the first part of (31).

Assume that @ acts effectively in P (i.e. the equality ep = p implies e = 1 or g = 0). In
that case, the relation A > u for A\ € Q4 determines an ordering in P. Using (32), we find that
M () contains only weights p < A, and M(\)) = Cl,.

Moreover, there exists a greatest submodule N()) of M()) not containing the weight A.
Setting

V(A) = MO/N(), (33)

we obtain a unique (up to an isomorphism) simple A-module with highest weight A.
The theory of Verma modules (over CTA) is quite similar to that in classical case A = U(g).
We concern some questions of this theory in Section 10.
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8 Simplest cases

We consider the following four algebras: (1) A = Wy, (2) A = U(sl), (3) A = Uy(sly), (4)
A = Dy(sly), equipping (respectively) with Cartan subalgebra H = C,Cl[h],C(q),C(q). All
these algebras are equipped with two generators e, f and the following genetics:

(1) [e, f1=
(2) [6, ] [h 6]—26 [hf]__2f7
(3) e, f] = hq, te = g%et, tf =q 2ftfort =q", hy=(g—q ) Lt —t1),
4) ef =¢*fe+1.
More exactly, in case (3) we can consider A as an algebra with generators e, f,t,t71. It is

clear that all these algebras are CTA, and the algebras (1), (4) are PA. In all the four cases, the
extremal projector p has the following form:

____Z (( )) fn n‘pn , (34)

n=0
where (n) = n for cases (1), (4), (n) = [n] for cases (2), (3), and the factor ¢, € H has the form

n

n

L [J(h+i+2), [[Ih+i+2] 1 (35)
': ]:1

in cases (1)—(4) (respectively). Here we use the symbol [z] for £ = h+n, where n € Z. Moreover,

the projector (34) can be written as an infinite product

oo

p=1[0-w/an), (36)
n=1
where w = fe, a, =n, n(h+n+1), [n][h+n+1], [n]g"~! (respectively).
Recall that the category L(e) in cases (1), (4) is monoidal. The correspoding simple object
M coincides with C[z], Sq(sl2) (respectively).

9 The case A="U(g)

We consider the examples (1)—(7) of § 2. Notice that cases (1), (4) are simple (PA), cases (2), (3)
are similar to each other (in view of quantization), and cases (5) correspond to (1)—(4). Cases
(6), (7) will be considered later (Sections 11, 12). Hence in detail it suffices to consider case (2)
only.

Let us fix the standard notations for g [7]. In particular, let b (resp., A;) be a fixed Cartan
subalgebra of g (resp., a set of positive roots of g). For any A € h* we set A\, = A(hy), where
a € Ay. A vector p € h* is defined by the condition p, = 1 for any simple o € A,.

Let p be the extremal projector of g (i.e. of A = U(g)). Notice that p € F(g)o, where
F(g) = U(g)'y;, (the localization of U(g) over the field R(h) = Fract U(h)). On the other hand,
let z be (generalized) Casimir element of the algebra g [7]. Notice that z € U(g)in (2 € U(g)
for dimg < o0) [7]. Then we have

z2 =2 +w, (37)

where z — z( denotes the canonical projection onto H (Section 1), extended to the algebra
U(g) fin. If is convenient to use the identification H ~ P(h*) (the algebra of polynomial functions
on h*. Setting z.(\) = zp(A + €), we obtain a family of affine functions a, = z. — zp (¢ € Q4 ):

ac(A) = 2(A + p,e) + (g,¢). (38)
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Theorem 2 [9], [7] The extremal projector p € F(g) can be written as infinite product

p=[]1-w/a), (39)
£#0

where w = z—z9. The ezpression (39) is hold for any ”constructive” g-module [9] (in particular,

for M ).

The expression (39) is called the Lagrange form of p. The following result means a ”control
on singularities” for p.

Theorem 3 (9], [7] The function (38) defines an essential singularity of p only for ¢ = ja
(quasiroot), where a € Ay, D # j € Zy.

In particular, let dimg < oo. In that case, Theorem 4 follows from the known "normal form”
of p [8]. Namely, for any normal ordering [8] Ay = {a, ..., }, we have

P = Day--Pam» (40)

where p, is an analog of (34) corresponding to the root o € A, . It is essential that (40) does
not depend on the choice of a normal ordering in A;. An analog of (40) is valid also for affine
Lie algebras [12].

Theorem 4 [9] For any constructive g-module X and any x € X, the left denomerator of the
rational vector-function pz has the form

ro= [T T(ha+pa+9), (1)

OLEA+ 7=1
where mo = max{n : elz # 0}.

The latter result is nontrivial as a control on singularities for the function pz. For example,
let eqz = 0 for a fixed @ € A;. Then the factor p, can be omitted in pz, independently on its
position in (40).

10 Verma modules

Let A be CTA. We select briefly a way of using the projector p in the theory of A-modules in
the category O = O(e).

Proposition 4 The singular set o(p) (Section 6) coincides with the following subsets of A € h*:
(o) there ezxists a nontrivial homomorphism M () = M (X +¢€), for some € € Q,
(B) the module V(\) coincides with a factor of M(X + €) for some € € Qy,
(v) the module M()) is not projective.

In particular, let the algebra N = N_ is without zero divisors. Then the action of N in M
is free. In particular, any nontrivial homomorphism M (A\) — M (XA + ¢ is an injection.

Let X be an object of the category O. We define P(X) as a set of 4 € P such that z,, # 0.
A vector z € X, is called primitive if ¢ Y, ex C Y for some submodule Y of X. In that case
the correspoding weight p is called primitive. A subset of P(X) consisting of primitive weights
is denoted Pprim(X).

A module X (of category O) is called regular if any primitive vector z € X, is extremal
(ex = 0) or the corresponding weight p is regular in the following sence: p ¢ o(p). The
subcategory of O consisting of regular modules is denoted by O,.g.
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Proposition 5 Any module X of the category O is generated by its primitive vectors. Any
module X of the category Oreq is generated by its extremal vectors. In the latter case, we have

X = AX®. (42)
Theorem 5 The category Oreg is semisimple, with simple objects V (X).

The proof is similar to that of Proposition 3. In particular, for A = U(g), the category
Oreg contains the subcategory Oy of "integrable” A-modules [3]. In the case dimg < oo,
the category O;n: coincides with the category § of finite dimensional g-modules. In that case,
theorem 6 coincides with a classical theorem by H. Weyl [7].

11 Hypersymmetry

We draw the attention to a special way of constructing of GA. A pair of unital algebras (A4, B)
is called admissible if 1 € B C A, where B is GA and 1 is the unity of A. For any A-module X,
we set X¢ = kere (with respect to B). The space

T={a€ A:eaC Ae} (43)

coincides with Norm Ae (= the greatest subalgebra of A containing Ae as a two-sided ideal). It
is clear that TX¢ C X*¢ (for any A-module X). Setting

S = T/Ae, (44)

we define an action of S in X¢ (via eX¢ = 0). Hence we have SX¢ C X¢. The algebra (44) is
called the hypersymmetry algebra of the space X°€.
Using (43), we obtain that S is a part of M. Passing to the rational hull M’ = A’/A'e
(Secton 6), we obtain the algebra
Z=2S8=pM, (45)

where p is the extremal projector of B (p € B.,,). The following example is crucial (in the

theory of Lie algebras).
The pair (g, ) of finite dimensional Lie algebras is called reductive if the algebra & is re-
ductively embedded in g (i.e. g is a reductive (adt)-module). In particular, ¢ is reductive and
=t @ p where p is a complementary (adt)-module.
It is clear that the pair A = U(g), B = U(¥) is admissible. In that case, the localization (45)
is given over the field R(h) = Fract U(h), where § is a fixed Cartan subalgebra of ¢.

Theorem 6 [8] Let a; (i = 1,...,n) be a weight basis of the (adt)-module p. Then the algebra
Z = Z(g,%) defined in (45) is generated (over R(})) by the elements z; = pa; (i = 1,...,n)
equipping with a quadratic genetics (over R(b)).

Ezample. Set AZ, = Z(gn, 9n-1), where gn = gl,, (over C). The elements e; = e;, e_; = ep;
(t=1,..,n—1) and ey = e, form a weight basis of p. Respectively, AZ, is generated by the
elements z; = pe; (1 = 0,+£1,...,£(n — 1)). The corresponding genetics has the following form:

2iz; = €522, for i+ 3 #0, (46)
n—1

2iZ_j = Zaijz_jzj +v=0 (47)
Jj=1

with coefficients in R(h) [8]. In that case, the algebra AZ, is GA.
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12 Yangians

The Yangian Y (g) was introduced by V. Drinfeld [1], [2] as an important example of a quantum
group. Here g is a complex simple Lie algebra. The algebra A = Y (g) is a unital algebra over
C. Moreover, V. Drinfeld described a genetics of Y (g), in terms of special elements H;,, X} [1].
Actually, the algebra A = Y (g) has a triangular decomposition (1), in terms of these generators.
Moreover, A is CA.

It is not difficult to verify (by the analogy with U(g)) that the canonical form of Y (g) is
nondegenerate (on M). In other words, we obtain the following

Theorem 7 The Yangian Y (g) (g is simple) is GA.

The theory of finite dimensional representations of Y'(g) {10] can be easily embedded in
the general theory of representations of GA. On the other hand, the definition of Y (g) can be
sometimes extended to the case when g is a complex reductive Lie algebra (g = gl,,, for example).

The Yangian Y,, = Y(gl,) is a unital algebra (over C) generated (over C) by the set of

elements
o0

tij(u) = Z tg;)u—s, tg)) = (5¢j, (48)
s=0
where u is an independent variable (in fact Y;, is generated by the coefficients in (48)). The
correspoding genetics of Y;, has the following form:

[ti (w), tri(v)] = trj(u)tar(v) — tij(v)ta(u). (49)

Ezample (n = 2). In the case, the matrix t(u) = (¢;;(u)) can be rewritten as follows:
a(u) B(u) )
t(u) = , 50
w = (o S (50
where .
z(u) = Z ziu”t
i=0

for z = a, 8,7, 9. Setting (zy);; = [z;,y;], we can write the genetics (49) in the following form:

(xy)i+1j — (@Y)ij+1 = (TD)ij, (51)

where the symbol Z7 is defined in terms of permutation of rows z — T in (50). Namely, 7§ = =y
(resp., T7) if the elements z,y belong to a common row (resp., to distinct rows) in the matrix
(50).

Using the genetics (51), we obtain that Y = Y, has triangular decomposition (1), where
H (resp., N_, N;) is generated by the elements a(u), d(u) (resp., y(u), B(u)). Moreover, H =
AD = DA, where A (resp., D) is generated by the elements a(u) (resp., 6(u)). The algebra H
is not commutative. Hence this decomposition does not imply the structure of GA.

However, it is easy to verify that the algebra Y coincides with a projective limit of Gauss
algebras 7(Y), where 7 is a finite dimensional representation of Y.

In particular, the general theory of representations of GA (in the category O(e)) can be used
to study finite dimensional representations of Y.
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