УДК 519.85.62

МЕТОД ОПТИМИЗАЦИИ В ЗАДАЧЕ РАСЧЁТА ОПТИМАЛЬНОЙ ТРАЕКТОРИИ САМОЛЁТА

С В. Г. Малинов

Ключевые слова: проекционные обобщённые двухшаговые двухэтапные методы; минимизация; переменная метрика; оптимальная траектория; самолёт.

Аннотация: В работе предлагаются новые проекционные обобщённые двухшаговые двухэтапные методы минимизации функций с "овражными" гиперповерхностями уровней в евклидовом пространстве; с их помощью решается тестовая задача оптимизации траектории разворота самолёта в плоскости горизонта; приводятся результаты вычислительных экспериментов.

1. При решении задач оптимального управления движением дозвуковых и сверхзвуковых самолётов с воздушно-реактивными двигателями (т.е. аппаратов, скорость которых намного меньше круговой скорости) в пространстве и в горизонтальной плоскости, имеются значительные трудности: удовлетворения заданным конечным условиям; учёта ограничений на фазовые координаты и управляющие функции; «овражности» и многоэкстремальности получаемой для минимизации вспомогательной функции. Решить задачу оптимального управления (ЗОУ) численным методом на порядок труднее, чем обычную задачу оптимизации. В работе [1] для решения таких трудных задач минимизации были предложены проекционные двухэтапные двухшаговые методы переменной метрики; здесь предлагается их модификация и апробируется на ЗОУ движением самолётов в плоскости горизонта.

2. Рассмотрим для решения ЗОУ модификацию метода из [1], обобщённый двухшаговый двухэтапный метод переменной метрики.

1 этап.
$$z^{k} = P_{Q} \left[x^{k} + \alpha_{k} y^{k} / ||y^{k}|| \right];$$

2 этап. $x^{k+1} = P_{Q} \left[z^{k} - \gamma_{k} B(z^{k}) \nabla f(z^{k}) / ||\nabla f(z^{k})|| \right], \qquad k = 0, 1, 2, ...$
(1)

где $x^{-1} = x^0 \in E^n$; $P_Q[v]$ – проекция вектора v на выпуклое замкнутое множество Q из евклидова *n*-мерного пространства E^n , нормированного скалярным произведением, $||x|| = (x, x)^{1/2}$ $\forall x \in E^n$; $y^k = x^k - x^{k-1}$; α_k , γ_k – параметры метода; $B(z^k) = B_k$ – последовательность положительно определённых диагональных матриц; последнее означает, что наряду с данной, в пространстве E^n введена новая метрика с помощью другого скалярного произведения (B(x)u, u)и B(x): $E^n \longrightarrow E^n$ при каждом фиксированном $x \in E^n$ есть самосопряженный, линейный, положительно определённый оператор, изменяющий метрику пространства.

Используются реализации (1) с одномерной минимизацией $\gamma_k = \arg \min_{\gamma>0} f\left[z^k - \gamma B(z^k) \nabla f(z^k) || \nabla f(z^k) ||\right]$ для поиска только одного параметра γ_k .

Предлагаемый метод и его версии здесь реализованы в алгоритмах штрафных функций (МШФ). Они отличаются от исследованных ранее в [1] наличием оператора проектирования на первом этапе, что позволяет предотвратить выброс из «оврага» на первом этапе работы методов.

3. В качестве примера задачи о развороте самолёта в плоскости горизонта построим математическую модель (MM) на основе MM задачи о пространственном развороте самолёта ([2], с. 353-355). В предположении постоянства высоты манёвра система дифференциальных уравнений движения самолёта имеет вид:

$$2dD/dt = V\cos(\eta) = f_1(x, u); \quad d\eta/dt = -gu_2 N\sin(\gamma)/V = f_4(x, u); dZ/dt = -V\sin(\eta) = f_2(x, u); \quad dw/dt = -c_s = f_5(x, u);$$
(2)

$$\frac{dV}{dt} = g \left[u_1 P \cos(\alpha) - c_x q^0 S \right] / w = f_3(x, u),$$

где $q^0 = \rho(h)V^2/2$; $\rho(h) = 3, 3 \cdot 10^{-10}h^2 - 1, 155 \cdot 10^{-5}h + 0, 125$; $P = [10 + V^2/(a(h))^2](25000 - h)/12, 5$; a(h) = 340, 3 - 0, 00408h; $\alpha = u_2Nw/(u_1P + 4, 6q^0S)$; $c_s = [7 + 2(u_1 - 0, 3)^2]u_1P/3600$; $c_x = 0, 02 + 3, 174\alpha^2 + 0, 03u_3$; $N = \min \{q^0S/w; 150000/w; 8\}$, где $D = x_1$, $Z = x_2$ - декартовы координаты самолёта (продольная и боковая); h- высота над Землёй; $V = x_3$ - модуль вектора скорости; $\eta = x_4$ - угол курса; $mg = w = x_5$ - вес самолёта; u_1 - величина тяги двигателя, отнесённая к максимальному значению тяги P; u_2 - величина перегрузки, отнесённая к максимальному значению; $\gamma = u_4$ - угол крена; α - угол атаки; $S = 55 \text{ м}^2$ - характерная площадь самолёта; q^0 - скоростной напор; c_x - коэффициент лобового сопротивления; c_s - секундный расход топлива; $g = 9.81 \text{ м/c}^2$. Заметим, что $\rho(h)$ и a(h) будут постоянными.

Ограничения на управления и их производные: $0.05 \leq u_1 \leq 1$; $0.01 \leq u_2 \leq 1$; $0 \leq u_3 \leq 1$;

$$\left|\frac{du_1}{dt}\right| \leqslant 0.2; \quad \left|\frac{du_2}{dt}\right| \leqslant 0.25; \quad \left|\frac{du_3}{dt}\right| \leqslant 1; \quad \left|\frac{du_4}{dt}\right| \leqslant 1.57 \quad \text{pag/c}; \tag{3}$$

Начальные условия для фазовых координат и значения управлений:

$$x_1(0) = x_2(0) = x_4(0) = 0;$$
 $h(0) = 7000 \text{ M};$ $x_3(0) = 300 \text{ M/c};$

$$x_5(0) = 20000 \ \kappa\Gamma; \quad u_1(0) = u_1^0; \quad u_2(0) = 1/N(x(0)); \quad u_3(0) = u_3^0; \quad u_4(0) = 0.$$
 (4)

Конечные значения фазовых координат и управлений:

$$h(T) = 7000 \text{ M}; \quad x_4(T) = -\pi; \quad u_2(T) = 1/N(x(T)); \quad u_4(T) = 0.$$
 (5)

Для задачи (2) – (5) фазовый вектор $x \in E^5$, а вектор управлений $u \in E^4$. Рассмотрим численное решение одной её подзадачи.

4. Численное решение задачи (2) - (5). Здесь она численно решается по методике из [2] - [3]. На ММ (2) - (5) ставится задача оптимального быстродействия: найти вектор u(t) управлений, удовлетворяющий системе (2), ограничениям (3), (5) и переводящий самолёт из горизонтального полёта на высоте 7000 м в горизонтальный полёт на высоте 7000 м с разворотом вектора скорости на 180 градусов за наименьшее время при условиях (4).

Минимизируется время движения T, условия (5) образуют систему терминальных ограничений. Начальные приближения для МШФ: $T_0 = 20$ с; $u_1(t) = 0,476$; $u_2(t) = 0,31$; $u_3(t) = 0,001$; $u_4(t) = 1,5 \sin(\pi t/T_0)$. Результаты решения приведены в таблицах 1 и 2.

			1		
t	m(t)	V	η^0	D	Z
0	20000,0	$_{300,0}$	0,0	0,0	0,0
$0,\!79145$	$19996,\!945$	$303,\!334$	-0,00001	$249,\!300$	0,00001
$1,\!5829$	$19993,\!885$	$305,\!231$	$-3,\!35100$	$501,\!370$	0,00002
$2,\!3743$	$19990,\!821$	$304,\!796$	-10,7920	$754,\!583$	$14,\!827$
$3,\!1657$	$19987,\!758$	$301,\!469$	$-20,\!5470$	$1003,\!389$	$62,\!255$
4,7486	19984,700	$291,\!093$	$-42,\!5740$	$1447,\!516$	$279,\!245$
$6,\!3314$	$19978,\!613$	$281,\!931$	$-63,\!9180$	1767,756	633,777
$7,\!9143$	$19972,\!556$	$273,\!879$	$-84,\!6130$	$1933,\!061$	$1066,\!470$
$9,\!4971$	$19966,\!527$	$266,\!776$	-104,737	$1935,\!865$	$1516,\!841$
$11,\!080$	$19960,\!520$	$260,\!488$	$-124,\!356$	$1788,\!287$	$1930,\!352$
$12,\!663$	$19954{,}534$	$254,\!904$	$-143,\!530$	$1517,\!429$	$2263,\!059$
$14,\!246$	$19948,\!564$	$249,\!934$	$-162,\!308$	$1160,\!299$	2484,284
$15,\!037$	$19942,\!610$	$249,\!043$	$-170,\!451$	$962,\!427$	$2547,\!403$
$15,\!829$	$19940,\!685$	$249,\!175$	-176,723	$758,\!340$	2581,734
$16,\!620$	19939,402	250,030	-180,081	$551,\!614$	2593,571

Таблица 1

Обозначения в таблице 1: m(t) – переменный вес самолёта в моменты времени t по мере расхода горючего; V – скорость самолёта; η^0 – угол курса в градусах; D – продольная дальность; Z – боковая дальность.

Полученное в таблице 1: $\eta = -180,081^{0}$ соответствует значению $\eta = -3,1430018$; время счёта для одного значения штрафного коэффициента (it = 5) 10 с, всего 30 с. В таблице 2 $\gamma_{max} = 1,2636$ соответствует максимальному углу крена 72⁰24'. Конечное значение ограничения равенства $u_2(T) - 1/N(x(T)) = 0,000004$.

t	$ u_1(t)$	$u_2(t)$	$u_3(t)$	$u_4(t)$
0,0	0,7550	$0,\!01$	$0,\!001$	$0,\!00001$
0,79145	0,7550	$0,\!1800$	$0,\!001$	0,7200
1,5829	0,7550	$0,\!4400$	$0,\!001$	$1,\!26360$
$2,\!3743$	0,7550	$0,\!6800$	$0,\!001$	$1,\!26360$
3,1657	0,7550	$0,\!8900$	$0,\!001$	$1,\!26360$
4,7486	0,7550	$1,\!0000$	$0,\!001$	$1,\!26360$
6,3314	0,7550	$1,\!0000$	$0,\!001$	$1,\!26360$
7,9143	0,7550	$1,\!0000$	$0,\!001$	$1,\!26360$
9,4971	0,7550	$1,\!0000$	$0,\!001$	$1,\!26360$
11,080	0,7550	$1,\!0000$	$0,\!001$	$1,\!26360$
$12,\!663$	0,7550	$1,\!0000$	$0,\!001$	$1,\!26360$
14,246	0,7550	$0,\!8800$	$0,\!001$	$1,\!26360$
15,037	0,6100	$0,\!6800$	$0,\!001$	$1,\!26300$
15,829	0,4760	$0,\!4500$	$0,\!024$	$0,\!88000$
16,620	0,4760	0,1936	0,024	0,00000

Таблица 2 Оптимальные значения управляющих переменных

Системе (2) соответствует функция Понтрягина $H(x, u, p) = \sum_{i=1}^{i=5} p_i f_i(x, u)$, где начальные значения сопряжённых переменных $p_i(0) = c_i = 1, i \in \{1:5\}$, а вычисленный в ходе минимизации вектор сопряжённых переменных равен

p(T) = (1,00049; 1,00215; 0,99995; 1,00000; 0,99996).

5. Вывод. Результаты показывают работоспособность предлагаемого метода при решении ЗОУ, достаточную скорость и точность минимизации.

ЛИТЕРАТУРА

1. Малинов В.Г. Проекционный двухшаговый обобщенный двухпараметрический метод минимизации первого порядка с переменной метрикой // Учёные записки УлГУ. Серия Фундаментальные проблемы математики и механики. Ульяновск: УлГУ, 2003. Вып. 1 (13). С. 127-138.

2. *Евтушенко Ю.Г.* Методы решения экстремальных задач и их применение в системах оптимизации. М.: Наука, 1982. 432 с.

3. Дикусар В.В., Милютин А.А. Качественные и численные методы в принципе максимума. М.: Наука, 1989. 141 с.

Abstract: the article deals with new projection generalized two-step two-stage methods of minimization of functions with ravine-type hipersurfaces in Euclidean space; using proposed methods test problem optimization of the trajectory of airplane is being solved; we also present the results of some computational experiences.

Keywords: Projection generalized two-step two-stage methods; Minimization; Variable Metric; Optimal trajectory; Airplane.

Малинов Валериан Григорьевич к. ф.-м. н., доцент Ульяновский государственный университет Россия, Ульяновск e-mail: vgmalinov@mail.ru Valerian Malinov candidate of phys.-math. sciences, senior lecturer Ulyanovsk State University Russia, Ulyanovsk e-mail: vgmalinov@mail.ru

УДК 378.147.515

ФОРМИРОВАНИЕ ПРОФЕССИОНАЛЬНОЙ МОБИЛЬНОСТИ СТУДЕНТОВ ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА КАК ПЕДАГОГИЧЕСКАЯ ПРОБЛЕМА

© О.А. Малыгина

Ключевые слова: профессиональная мобильность; системно-деятельностная технология обучения; принципы экспериментального обучения.

Аннотация: Формирование профессиональной мобильности студентов, обучающихся по наукоемким техническим направлениям, является одной из актуальных проблем высшей школы; автором разрабатывается научно-методическая концепция, основанная на системно-деятельностном подходе к обучению и обеспечивающая решение проблемы, начиная с младших курсов технического университета; реализация концепции осуществляется на материале курса высшей математики, содержание которого строится на новых принципах.

Выполнение социального заказа по подготовке компетентных профессионально мобильных специалистов, бакалавров и магистров по наукоемким техническим направлениям предполагает реализацию такого обучения, которое бы позволяло уже на младших курсах университета (вуза) при изучении дисциплин фундаментального цикла сформировать у студентов основу профессиональной мобильности. Общеизвестно, что высшая математика играет значительную роль в базовой подготовке выпускников наукоемких технических направлений. В связи с этим формирование основы профессиональной мобильности можно начинать уже в процессе обучения студентов этих направлений высшей математике. Но традиционная модель изучения высшей математики в техническом университете (вузе) не обеспечивает достижения поставленной цели. Таким образом, имеет место противоречие между реальными потребностями в формировании основы профессиональной мобильности учащихся наукоемких технических направлений уже на младших курсах, в частности при изучении высшей математики, и функционирующей в высшей школе моделью обучения. Разрешение выделенного противоречия предполагает разработку научно-методической концепции, обеспечивающей формирование основы профессиональной мобильности в процессе обучения студентов наукоемких технических направлений высшей математике. Такова педагогическая проблема.

Теоретическими основаниями разрабатываемой автором научно-методической концепции, обеспечивающей формирование основы профессиональной мобильности в процессе обучения студентов наукоемких технических направлений высшей математике, являются психологическая теория