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Murens X. X, Matpuunas Moaens nomynsuuu. JJMCKpeTHbIe CTPYKTYPHPOBAHHBIE MOAEIH B3POC/IEHHS NONYJISAUHI HHTEH-
CUBHO MCCIIEYIOTCS CO BPEMEH HOBATOPCKOi pabotel BepHanennn, Jlbiounca u Jlecnu. Moaenu Takoro poaa foCTatouHo
XOPOLIO 3aPEKOMEHIOBAIH ce0 KaK MHCTPYMEHTbI B GHONOrHH nonyisunit. HacTosmas cTates COCTOMT U3 ABYX uacteil.
[lepBas M3 HUX MOCBALUEHA MATPUYHBIM MOACTAM MONYJALMHA, OCHOBaHHbIM Ha pabore Kacysnna [1]. Us-3a neduuwmrta
CTPYKTYPHPOBAHHBIX JAHHBIX WIUTIOCTPATHURHBII MaTepwal, MPEACTAaBIEHHbIH B 9TOH YacTH, OCHOBAH HA WCKYCCTBEHHBIX

nasHbix. Bo BTOpOﬁ 4acTH CTATbH BHUMAHUC COCPEAOTOYCHO Ha OTHOCHTENLHOMH CKOpPOCTH pocta nony,rmunﬁ KPEBETOK,

COBMECTHO ofbuTaomux B paiione otvenun Codana B Mosambuke. OOpa3ubl 06paloTaHbl npy NOMOLUM TEXHOJOTHH

Matlabl2 n Minitab12 Software.

1 WHAT IS POPULATION BIOLOGY?

A population is a group of individuals of the same spe-
cies that have a high probability of interacting with each
other. A simple example would be the shrimps in the
ocean, trout in the lake, although in many cases the
boundaries delineating a population is simply the study of
population biology.

An understanding of the complex ecological commu-
nities with numerous species interacting with each other
and the environment requires an understanding of the sim-
pler ecological systems of one or two species first [2]. In
present paper we will focus on population biology of single
species for two reasons.

First, an understanding of the dynamics of a single spe-
cies leads to the primary questions of population ecology.
Second, this is the simplest system that can be studied from
a population approach.

We will focus also on population size as the variable
because it is possible, even likely, that small number of
individuals may have effects, especially on population
stability, out of proportion to their numbers.

Population biology is by its nature a science that fo-
cuses on numbers. Thus, we will be interested in under-
standing, explaining and predicting changes in the size of
population.

2 MODELLING POPULATIONS
BY LESLIE MATRICES

In this paper we will focus on model based on Leslie-
Matrices. This kind of model is important in studying
structural population dynamics. Studying the life cycle in
demographic or population dynamic context requires a way
to translate from the individual to the population level.
Individual organisms are born, grow, mature reproduce and
eventually die [1]. We assume that as females actually give
birth, they are more essential to the propagation of a spe-
cies than a male. This makes sense as one male can fertil-
ize the eggs of several females and once this has been done
each female will gestate for some period of time.
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Obviously, the female will not be in position to be fer-
tilized again until the gestation period has elapsed. So, the
rate at which offspring are produced is determined by pa-
rameters that describe the female population.

Suppose that the maximum age of a female of the spe-
cies is . We shall divide the interval [0;H] into n age
classes,

{0;%} {%%}{("_ﬁ;ﬂl{} (1)

We are interested in the number of females in each age
class and how this grows with time. Lets assume that the
population in each of these age classes is measured at time
intervals of H/n; that is, at times

H kH
by =0, 1, =0 oo, 1y =, @)

n n

Letxi(k) be the population in the i age class C;
where
i-VH iH .
C’:{—————( ) ’—J; ISlSn.
n n

as measured at t;, =kH /n .

Here we define two demographic parameters, which
determine how these age specific populations changes:

- for i=1,2,3,...,n, F; will be the fraction of fe-
males (daughters) to a female in age class C; .

- for i=1,2,3,...,n, P, will be the fraction of fe-
males in age class C; expected to survive for the next H/n
years (and hence class C,, ;).

One can see that it is obvious to consider F; 20 and
0 < P, <1. If for any i we find that F; >0, we call the age

class C; fertile.
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The number of daughters born between successive
population measurements at times #,_; and , is

n

Fnlf 4 B st Fplh 3 a3

nn
i=1

and this quantity is exactly x,k , equating this we get

n
k k-1 .
xf =Y Faxf* . @)
i=1

Also, for i=1,2,3,...,n—1, we get

x:A) Fl FZ Fn—l Fn X}k_l)
Wl R0 w0 0| “
®l=lo p - 0 0 || x4
fik) 0 O [)"4 0 xE'k—l)
or indeed,
xt=Lx%D ©6)

where L is called the Leslie Matrix.
Let’s define above-mentioned functions, F; and P;. Be-
fore doing this, we need some important definitions.

Survival

Survival is characterized by three functions of age:
a)  the survivorship function. Let x be age, the survi-
vorship function is defined as:

l(x) = P [survival from birth to age x ].

It is assumed that this function is non increasing, with
I(0)=1, (it is often rescaled so that /(0)=10000 or some
other value and interpret as number of survivors out of an
initial cohort of 10,000, rather than as a probability);

b)  the distribution of age at death, f{x) is the prob-
ability density function for the age at which individual die;

c) the mortality rate or hazard function, is
p(x)=tim —I—P[death in[x,x+Ax]|survival tox]:f—(iz.

Av—0 Ax I(x)
This last function can also be defined by the negative of
the slope of the survivorship curve on a semi-logarithmic
plot

N dIn(x)
wx) = dv

This formula is derived from the following result. The
probability of surviving from age x to x+Ax is given by

/(x+Ax)/l(x). By Taylor expansion, leaving out terms power
greater than one we get

l(x+Ax)=l(x)+AxM.
dx

Thus, one minus the survival probability will give us
the probability of death in the interval from x to x+Ax
dl(x)
I(x)Ax ——=
l_l(x+Ax):1 dx __Axdlnl(x).
I(x) I(x) d(x)

Dividing both right and left hand sides of this equality
and approaching Ax to zero we get

dInl(x)

plx)=— T

All these three functions are interrelated [1]. Without
details we will define reproduction as expected value of
offspring per individual aged x per unit time

m(x) = E [ offspring per individual aged x per unit time 1.

Now we are in position to define the two functions in
Leslie matrix, namely P; and F..

In birth-flow population (in which the birth occur
continuously over the projection interval) function

P, — (survival probability) is approximately found to be

P IO+1GE+1D)

7
G- +0) o
and F; — (fertility), as
PRI ( m; + Py ] ®
2 2

While in birth-pulse populations (in which reproduc-
tion is limited to a short breeding season within the inter-
val), here the survival probability and the fertility coeffi-
cient are calculated as, [1]

P;= P [survival from age i+p-1to itp]=

I(i + ,
. lixp) ©
Ii+p-1)

or

D postbreeding (p—0)
p=lli=1 (10)

fi+1) prebreeding  (p—1)

1))
while F;, for birth-pulse is given by
F = 1(17)P,~]“" Pm; postbree.dI ng (p—0) an
I(1)m; prebreeding (p—>1)
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p stands for the fraction of a time unit needed by offspring
to survive to the next generation (n(z + 1)).

2.1 Eigenvalues and long-term behaviour

It is natural to ask what the long-term population dis-
tribution will be. And to find this, we need eigenvalues and
eigenvectors. We have found that the population distribu-
tion in the A time period can be found from the population
distribution in the (k — 1)™ time period using the formula
(6), and one can relate population distribution in kth time
period to the initial population distribution by using the
formula

XN =1, x(0). (12)

So, to understand what happens in the long run, we
need to be able to find L, for suitable large 4, and the easi-
est way to do this is to use diagonalization.

Consequently, assuming that the Leslie L matrix is di-
agonalizable, we can find an invertible matrix P that

P={v, vy o v (13)

where the vectors vy, v,,...,V, are the eigenvectors cor-

responding to the eigenvalues A, A,,..., A, with multi-
plicity of L and

P7'LP =D =diag [\, A, 0, ] . (14)

On re-arranging we find that L = PDP™, and so if we
multiply L by itself k times we would find that

LF= (PDP“ Y = (PDP" )~--(PDP"): PD P (15)

k times

Now we can rewrite L, matrix as follows
L} = Pdiag [ 05,25 (16)

provided matrix D diagonal. This result simplifies the task
of finding the population distribution in the kX time period.
However, if we are concerned with suitably values of £ we
can further simplify the problem.

Result 1. The characteristic polynomial for the
matrix L is given by

p()\.):”L—A“=(~1)(7\.” _Fix1—l __FEZ]_)1N1-2 _
APy By =2 —~F,RPF).

17)

n-1

Solutions of (17) are the eigenvalues of the Leslie ma-
trix, given this fact it can be seen that

p)=0 = ¢()=1,

166

where g(}) is found by isolating 1" in p(A) = 0 and dividing
both sides by 1"

()= PR SR P
A A A

- z(ﬁl PJF,};R
i=l\_j=1

The function g(X) has the following properties
- g(}) is a decreasing function for A >0,

(8)

- asA—o0", g(h) >,
- as A—wo, g(A)—>0.

As conclusion we can say that there is a unique posi-
tive real solution of equation ¢(&) = 1. That is, L has a
unique positive real eigenvalue, and we shall call this by
Ay . Further, an eigenvector corresponding to this eigen-

value is given by

I
A/
w=| RR/M (19)

n-1
PPy..P /%]

and all the entries in this vector are positivel. Vector v;is

an eigenvector of L corresponding to A, .

Result 2. The contribution of all eigenvalues can
be summarized as follows:

e If A; is positive, 7\/;: produces exponential growth
if A > 1 positive and exponential decay if A <1 negative,

o If —1<X; <0, then k’; produces damped (con-
vergent) oscillations with period equal to 2,

o If A; <—Ithen ?»/; produces diverging oscillations
with period equal to 2.

e Complex eigenvalues A =a+ib produce oscilla-
tions. Lets define complex A in polar form

A =[a® +b*(cosO+sin0)]''?, where 0 = arctan(a/b),

A= I?»|k (cosk® +sin k).

The complex solution always comes with its conju-
gate . = a — b; , the solution to the projection equation will
then contain terms of the form

M4k = 2cos k6.

As complex eigenvalue is raised to higher powers, its
magnitude | A [/" increases or decreases exponentially,
depending on whether | A | is greater or less than one. Its

angle in the complex plane increases by 0 each time step,
completing an oscillation with period of 27/6.
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Remark. Regardless of whether A, is real or complex,
the boundaries between population increase and population

decrease comes at |A|=1.

Lemma 1.Iftwo successive entries of matrix L
are positive (say F; and F.\) are both non-zero, then for
any eigenvalue, of L other than \,,

| X< Ay

In other words, if there are two successive fertile
classes, then the eigenvalue A, is dominant.

Proof: Let’s consider two successive fertile classes
and that L diagonalizable.

We let A; to be dominant eigenvalue and v; as given
above to be the corresponding eigenvector. Let’s define the

other eigenvalues and eigenvectors of L by Ag, Az, ..., A,

and v,,vs,..., v, respectively. Now, recalling (16), (13)

n
and (12), we can write

X5 = P diag (M 5. 08 PTIX O (20)
and by dividing both sides by 7\./1\' we get

x®) [kzjk (x ]’f L)
_:Pdlag 17 ~ | £ P X 21
A A .

as we are considering A, to be dominant, we find that
[R;/A |<1 for i=2,3,...,n, and this implies that the
diagonal entries of the form (A;/A;)—>0 as k — +o
consequently, we find that

x®
oy =lim——=
k—ox )Ji
% k 2 k (22)
=lim Pdiag|1L| =2 | .| == | |P'Xx©
k—x 7‘] }\,1

where the constant ¢ is the first entry of the vector given by
P“lX(O). Thus, for large values of k& we can have ap-
proximately

X(k) R C?val,

and this result tells us the proportion of the population
lying in each age class is, in the long run, constant. We can
also deduce that

y &) o KIX(/\'—I).

This tells us that the population in each age class grows
by factor of A, every time period (i. e. every H/n).

2.2 Density — Dependent Models
Hypotheses for population regulation

The ecosystems do not regulate consciously by them-
selves. Instead, the role that different organism plays in the
ecosystem impact other organisms through the flow of
energy and nutrients. These impacts regulate the produc-
tion of other organisms, and hence the flow of energy or
nutrients through the entire ecosystem. Many hypotheses
have been proposed for the causes of regulation of popula-
tion:

- Populations are limited by density-independent
factors such as changes in the weather.

- Populations are limited by their food supply.

- Populations regulate themselves through mecha-
nisms such as territoriality of cannibalism.,

- Populations are limited through competition.

- Populations are regulated by predators.

- Populations are regulated by parasites or diseases.

Model construction

Lets define density-dependent model as
n(tr+1)=A,n(1) (23)

where the subscript indicates that all the entries a;;(n)
depend on the population vector n. Each stage in the life
cycle may contribute differently to “density”. We will

write entries a; as function of a weighted sum of stage

density:

c; 20 (24)

N(t)= ic,.n,. )
i=l

where ¢; measures the contribution of #; to resource, or
whatever other interactions is responsible for the depend-
ence. This includes as a special case, the total population
size

n

N(t) =Y n.(t)

i=1
and density of a single stage, N(7) = n;(t) for some i.

The entries should satisfy aij(n) 20 for all i; j and

n > 0. Lets call
A, =T, +F, (25)

projection matrix, where T, is the transition matrix and

F, is the reproduction matrix. T, should be sub-
stochastic; that is the entries should

0<a;(n)sl foralli;jand n20.

satisfy

T1y(n) <1
i=l
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forall i; jand n > 0.
In one-dimensional maps for unstructured populations
we have

Nt +1)=/(N1))=g(N(0))N(1) (26)
where g(N) is the per-capita growth rate. If

dg(N)

27
N @7)

for some N > 0, then g(-) is said to exhibit depensation,
i. e, the increase in the per-capita rate with density is ex-
actly compensated by the increase in density, so that the
net growth rate is asymptotically constant.

2.3 Local stability of equilibria

A set € is equilibrium state of (23), and it satisfies the
condition

=A

o>

e€.

By definition, an equilibrium state n is said to be sta-

ble if for any & > 0, there exist a § > 0 such that
[n©-¢|<s, then |n@)-é<e for al
t=1,2,3,..., where " . H denotes any vector norm. Say-
ing that an equilibrium point € is stable, means that if we
start somewhere very closer to this point, €, the solution
will stay closer to € for long time.

If ” n(t)-e ” tends to zero as ¢ tends to infinity, then

the equilibrium state is called asymptotically stable. In this
case the solution will actually converge to €. Lets define
the difference between vector n and the equilibrium € by

x(t)=n(t)—e (28)

which gives n(f) = x(¢)+€. Then we can find our line-

arized model to be

x(f+1) = An+Z-§é— H; |x(t)=Bx(r) (29)
i=1 N

2N

where the set of matrices H; has € in column i and zeros

elsewhere.

B=A, + A
on,

o
Ony

e e (30)

e e

for detail see [1]. For stability analysis of (23) is enough to
study the stability of linearized system (29). As the final
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form of the linearized model is
x(t+1)=Bx(r)

it is reasonable to discuss the magnitude of the eigenvalues
of matrix B .

Clearly, if |/11 I is the largest eigenvalue of B, then
one can draw the following conclusions:

- I?»] l >1=> equilibrium state € is unstable;

- |7»1 | <1= equilibrium state € is asymptotically
stable;

- |K| l =1=> linear approximation by Taylor series
does not provide sufficient information about stability. In
this case stability depends on higher order terms.

In Caswell’s book the Jury criterion for stability is pre-
sented only for 2x2 matrixes. It could be of interest to
extend the critenia for stability of discrete models with
nxn matrices, #> 2. It will allow us to identify exactly
the total number of roots in and outside the unit disc, re-
spectively.

If we write the characteristic polynomial of B in the
form

p(u) = agu” +ap™ ++a, @1

then p(p) is also termed convergent if all its roots have
modulus less than a unity. A convenient scheme to deter-
mine whether p(l) is convergent is follows:

Theorem 1 (Jury-Marden) [3]: A necessary and suffi-
cient condition for p(W) to be convergent polynomial is that

dy >0, d, <0, i=34,....,n+1 32)

il

where the d; are first column elements in the array of

Jury-Murray table, see [3].

o o . . . a, a,
an au—l al C(0
G G . . Con
dZ 1 d22 . . . dZn
Gy 6o - . C3 -1
dyy  dy . . ds, (33)
Citp © Gy . Ci—tn-i+3
diyy - o iy Aiip-ia
G Gl
dz‘j d; J+l
and
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C: C: 4 :
_ ij i~1,j+1 .
cy =4 d , i=12,...,n+1
i1, i1, 4+
dyj = Cipmjiry
with
C; =a, J=12,...,n+1.

Here is also possible to find the exact number of zeros
of polynomial p(}l) outside and inside a unity disc

fp|<1 (excluding the boundary). If there is no d, =0,
and let

Q. =(1 dyydly dyy.. iy, k=12..m (34)

then the number of roots of p(p) inside and outside the

unity disc is N and n—N, respectively where N is the num-
ber of negative products Oy defined in (34).

3 SUSTAINABLE HARVESTING POLICY

In many cases, the harvesting process is done, without
considering whether the harvesting rate will maintain the
population in stable level or it will drive it to extinction.

Sustainable harvest is a plan for harvesting on a regular
schedule in such a way that the harvest is always the same
and the state of the population after harvesting is always

the same. Suppose we let 4; be the fraction of the i th age
group that will be harvested at the end of each growth pe-
riod, and we let H be the diagonal matrix, whose entries
are the 4, ’s.

If we start a growth period with a age-distribution state
x, then the state after growth will be Lx. The harvest after
growth will be HLx, and that will reduce the population to
Lx - HLx, or (I — H)Lx. To be sustainable, the population
state after harvest must match the stating state, i. e,
(I — H)Lx = x. That, is x must be an eigenvector for eigen-
value 1 (A;) in the matrix (/ - H)L.

Let’s explore some of the implications of this defini-
tion:

1. We enter the Leslie matrix L in symbolic form and
compute (I - H)L, after that one can see that (/ — H)L is
another Leslie matrix. It differ from L in that ith row of L is
now multiplied by (1 — 4;).

2. We had defined characteristic polynomial p for Les-
lie matrix and his auxiliary function g (which depends on
p), (see section 2.2). Recall that A is an eigenvalue of L if
and only if p() = 0, and p(X) = 0 if and only if g(A) = 1.
We defined A; to be dominant eigenvalue of Leslie matrix
and it is unique positive solution of g(A) = 1. To get zero
population growth, we must have g(1) = 1, so that the larg-
est eigenvalue (and only positive one) turns to be 1. Sub-
stitute A = 1 in the definition of ¢ to get an explicit condi-
tion on birth and survival rates for having zero growth. In
conclusion if all this conditions are placed, in our new
matrix one finds that there are infinitely many ways to
construct a sustainable harvesting policy.

10
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Fig. 1.

3. It is important to recompute the dominant eigen-
value A;.

4. A uniform harvesting policy is one in which the
same fraction # is harvested from each age group. In this
case, we must have (1 — A)Lx = x. This means that 7 must
satisfy Ay = 1/(1 — h), so h =1~ 1/(A)).

Using this observation one can find the fraction of the
population that can be harvested every year and leave the
population distribution the same as at the start of each year.

Suppose that the population is harvested with harvest
rate A, in all age groups. The Leslie matrix in this case is:

04 15 17 12 03
05 0 0 0 0

(I-H)L=(-ml 0 08 0 0 0]
0 0 09 0 0
0 0 0 04 0

Considering the same initial population, the total fe-
male population after n years is given by,

T=[11111]1LX,.

As we found in example 5, the dominant eigenvalue is
M = 1,4232, before rounding. We can use this value to
calculate the harvest fraction 4, in this case h =1 - 1/A; =
= (,297. That is with this fraction the population can be
harvested without risk of driving it to extinction. Now the
dominant eigenvalue of the new Leslie matrix is as re-
quired for uniform harvesting policy, approximately 1,
i. €., A = 1,0005, computed in Matlab. One can find that
using this fraction #, the total population over years is not
very different. The next figure shows that in long run the
population will have stable growth rate in spite of that the
same population have been harvested.

4 STATISTICAL ANALYZE OF SHRIMP DATA

Fishery industry being one of the most contributors to
the Mozambican economy, is of great importance to study
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Fig. 2.

I1the dynamics of the exploited species in order to deter-
mine stock size for the decision makers.

It is well known that when population is exploited by
culling or harvesting it is much easier to say what we want
to avoid than what we precisely might wish to achieve. We
of course want to avoid over exploitation, where too many
individuals are removed and the population is driven to
biological jeopardy, or economical insignificance or per-
haps even to extinction. On the other hand we want to
avoid under exploitation where very fewer individuals are
removed than the population can bear.

Because of the nature of the available data, it is not
possible to make use of matrix model, the data were col-
lected for other type of model that T used in my thesis [4]
(using Delay Differential Equations). However, would be
of interest to understand the growth rate of shrimps using
cross-correlation.

From this view point, we will study the growth rate of
the four species of shrimps cohabiting in the Sofala Bank,
one of the reacherest regions in shrimps in Mozambique:
peneaus indicus, metapeneaus monoceros, peneaus japoni-
cus and peneaus monodom, respectively white, brown,
tiger and flower prawns.

Many facts may have influence in the dynamics of the
population size for example, temperature, seascnal fluc-
tuation of biomass and recruitment of new individuals.

The following model will be used to find the relative
growth rate for each species:

LdN(t) —In N(t) _ 3%
N dt N(@-1)

where N(7) stands for the population size at time ¢ and
dN(1)/Nd denotes the relative growth rate. The correlation
coefficients were found. The time interval is assumed to be
equal to 30 units during the year, because the catch period
is of 10 days giving a total of 300 days of fishing per year.
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There is no fishing during January and February; this pe-
riod is assumed by policy makers as maturation and re-
cruitment season. The correlation coefficients of pair wise
species are given bellow'® (36). The flower species is
negatively correlated to the white and tiger species, re-
spectively. The overall relative growth rates also show that
the flower species has decreased from 1997 to 1998 (37).

Py = 0,29, Py = 021, pg, =049,

(36)
Pyt = 0’57’ puf = _0’40’ pj'l = _0’35;
r, =0396, 1, =0]4L

(37
r, = 0,085, ry = -0,132.

The statistical analysis of the data was performed, a
clustering of the (4) variables was done in Minitab Package
to find the species that have tendency to grow at same rate.
As result, was possible to identified that brown, tiger and
white species form one cluster while flower species forms
each own cluster, (Appendix.I). A plot of relative growth
against time, for all species over the year are given the next
figure 2.

4.1 Conclusions

This study, although with very few data, has showed
that the total stock of the shrimp population in Sofala bank
region is dominated by brown and 3The subscripts are
initials of the species white species on the one hand and,
tiger and flower in small quantities on the other hand.

From result in (37), one can see that some significant
increase of population was verified in brown and white
species whereas flower has decreased from 1997 to 1998.
This result may suggest that there should be a good har-
vesting strategy, (see section 2.4), in other to avoid over
exploitation of the species.

The different scenarios shall then be analysed and a fi-
nal decision can be made, when the study is conducted
with more data, which is more detailed that can enable us
to use matrix models including also other knowledge not
represented in this brief analysis.
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