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Analytic continuation of spherical functions

for the hyperboloid of one sheet 1

c© V. F. Molchanov
Derzhavin Tambov State University, Tambov, Russia

For the hyperboloid of one sheet in R3, we construct four complex hulls and continue
analytically to them spherical functions of di�erent series (continuous, holomorphic and
antiholomorphic)
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In this paper we study analytic continuation of spherical functions on the hyper-
boloid of one sheet X in R3 on complex hulls of the hyperboloid.

The quasiregular representation of the group G = SO0(1, 2) decomposes in
irreducible unitary representations of the continuous series (with multiplicity 2) and
the holomorphic and anti-holomorphic discrete series (with multiplicity 1). This
decomposition is equivalent to the decomposition of the delta function on X on
spherical functions of these series.

It was known [2], [3] that spherical functions of discrete series can be continued
analytically on some complex manifolds (complex hulls of the hyperboloid X ). But
a similar question for spherical functions of the continuous series was not studied.

In this paper we construct 4 complex hulls Y+, Y−, Ω+ and Ω− of the hyperboloid
X . The spherical functions of two discrete series can be continued analytically on
two �rst manifolds, each series needs its own hull. But for the spherical functions of
the continuous series, the situation is more complicated and more interesting: the
spherical functions of the continuous series need both manifolds Ω+ and Ω−, each
spherical function is half the sum of the limit values from Ω+ and Ω−.

� 1. Complex hulls

Introduce in the space R3 the bilinear form

[x, y] = −x1y1 + x2y2 + x3y3, (1.1)
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The hyperboloid of one sheet X is de�ned by the equation [x, x] = 1. Let X C be
the complexi�cation of X . It is obtained as follows. Let us extend the bilinear form
[x, y] to the space C3 by the same formula (1.1). Then X C is the set of points x in
C3 satisfying the equation [x, x] = 1. Its complex dimension is equal to 2.

We consider that the group G = SO0(1, 2) acts linearly on R3 from the right:
x 7→ xg. In accordance with it we write vectors in the row form. On the hyperboloid
X , the group G acts transitively. The group G also acts on X C: x 7→ xg, but of
course not transitively.

In this section we determine some complex manifolds in X C of complex dimension
2, invariant with respect to G. They are maximal in some sense, the group G acts
on them simply transitively, so that the G-orbits are di�eomorphic to G and have
real dimension 3. The hyperboloid X is contained in the boundary of each of these
manifolds. We call them the �complex hulls� of the hyperboloid X .

We need the group SL(2,C) and its subgroup SU(1, 1). They consist respectively
of matrices:

g =

(
α β
γ δ

)
, g1 =

(
a b

b a

)
with the unit determinant. The group SL(2,C) acts on the extended complex plane
C = C ∪ {∞} (the Riemann sphere) linear fractionally:

z 7→ z · g =
αz + γ

βz + δ
.

This action is transitive. But the subgroup SU(1, 1) has three orbits on C: the open
disk D : zz < 1, its exterior D′ : zz > 1, and the circle S : zz = 1.

Denote the group SU(1, 1) by G1, then the group SL(2,C) is its complexi�cation
GC

1 .
Let us identify the space R3 with the space of matrices

x =

(
ix1 x2 + ix3

x2 − ix3 −ix1

)
.

The action x 7→ g−1xg of the group G1 on these matrices x is the action x 7→ xg of
the group G on vectors x ∈ R3. It gives an homomorphism of G1 on G.

Introduce on X horospherical coordinates u, v: (u, v) ∈ S × S, u 6= v, by

x =

(
u+ v

i(u− v)
,

1− uv
u− v

,
1 + uv

i(u− v)

)
.

The inverse map x 7→ (u, v) is given by

u =
x3 + ix2

x1 + i
, v =

x3 + ix2

x1 − i
. (1.2)

It embeds the hyperboloid X into the torus S × S, the image is the torus without
the diagonal {u = v}, the diagonal is a boundary of the hyperboloid.

When a point x ∈ X is transformed by g ∈ G, its coordinates (u, v) are
transformed by a fractional linear transformation (the same for u and v): u 7→ u ·g1,
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v 7→ v · g1, where g1 is an element in the group G1 which goes to g ∈ G under the
homomorphism G1 → G mentioned above.

Similarly we introduce horospherical coordinates z, w on X C: a point x ∈ X C is

x =

(
z + w

i(z − w)
,

1− zw
z − w

,
1 + zw

i(z − w)

)
, (1.3)

the variables z, w run over the extended complex plane C, with the condition z 6= w.
The inverse map is given by

z =
x3 + ix2

x1 + i
, w =

x3 + ix2

x1 − i
. (1.4)

These formulae, de�ned originally for x1 6= ±i, are extended by continuity to all
x ∈ X C. Namely, the points x = (i, iλ, λ), x = (−i, iλ, λ), λ 6= 0, have horospherical
coordinates (0, i/λ), (−i/λ, 0), respectively, and the points x = (i,−iλ, λ), x =
(−i,−iλ, λ) have horospherical coordinates (−iλ,∞) and (∞, iλ), respectively.

Thus, formulae (1.4) give an embedding XC → C×C, the image is C×C without
the diagonal.

There are the following relations. Let the points x and y in X C have horospherical
coordinates (z, w) and (λ, µ) respectively. Then

[x, y]− 1 = −2(z − λ)(w − µ)

(z − w)(λ− µ)
, (1.5)

[x, y] + 1 = −2(z − µ)(w − λ)

(z − w)(λ− µ)
. (1.6)

If a point x in X C has horospherical coordinates (z, w), then the point x (it belongs
to X C too) has horospherical coordinates (1/z, 1/w). Together with (1.5), (1/6) this
gives

[x, x]− 1 = 2
(1− zz)(1− ww)

|z − w|2
, (1.7)

[x, x] + 1 = 2

∣∣∣∣1− zwz − w

∣∣∣∣2 . (1.8)

Moreover, for the imaginary parts we have

Imx1 = −zz − ww
|z − w|2

, (1.9)

Im
x3

x2

= −1− zz · ww
|1− zw|2

. (1.10)

In the direct product C× C let us consider 4 complex manifolds:

D ×D, D′ ×D′, D ×D′, D′ ×D. (1.11)

The torus S×S is contained in the boundary of each of them. The group G1 acts on
C×C diagonally: (z, w) 7→ (z · g, w · g). It preserves all these manifolds (1.11). But
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this action is not transitive. This can be seen already when we compare dimensions:
dimesion of G1 is less than dimension of each manifold (3 < 4). Further, the group
G1 preserves [x, x], therefore, by (1.8), it preserves, for instance,

J =
[x, x+ 1

2
=

∣∣∣∣1− zwz − w

∣∣∣∣ 2

,

so that any G1-orbit lies on the level surface J = const.

Lemma 1.1 The following pairs are representatives of G1-orbits:

(−iµ, iµ), 0 6 µ < 1, for D ×D,
(−iµ, iµ), 1 < µ 6∞, for D′ ×D′,
(−iµ, iµ−1), 0 6 µ < 1, for D ×D′,
(−iµ, iµ−1), 1 < µ 6∞, for D′ ×D.

Proof. Let us consider D × D. Since G1 acts transitively on D, we can move the
�rst element of a pair in D×D to zero. We obtain a pair (0, ζ), ζ ∈ D. Now we can
act on this pair by the centralizer of 0, i.e the diagonal group K1 of G1. It consists
of matrices g1 with a = eiα, b = 0. They act by rotations with angle 2α around zero.
So we can move ζ to ir, 0 6 r < 1. Thus, any pair in D×D can be moved to a pair
(0, ir), 0 6 r < 1. This pair can be transferred to a pair (−iµ, iµ) in the lemma by
means of a matrix

g1 =
1√

1− µ2

(
1 iµ
−iµ 1

)
, r =

2µ

µ2 + 1
.

Similarly we consider the other 3 cases. �

For all µ satisfying the strong inequalities in Lemma 1.1, i. e. 0 < µ < 1 or
1 < µ < ∞, the stabilizer of the pair indicated in the lemma is the center {±E}
of the group G1, so that the G1-orbits of these pairs are di�eomorphic to the group
G ' G1/{±E} and has dimension three.

For µ = 0 or µ =∞ the stabilizer of the pairs is the subgroup K1in G1 consisting
of diagonal matrices, so that the corresponding G1-orbits are di�eomorphic to the
Lobachevsky plane L = G1/K1 and have dimension two. ForD×D andD′×D′ these
two-dimensional orbits are the diagonals {z = w}, and for D×D′ and D′×D they
are the manifolds {zw = 1}. Indeed, the matrix g1 carries the pairs (0, 0), (∞, ∞),
(0, ∞), (∞, 0) to the pairs (z, z), (w, w), (z, w), (w, z) respectively, where z = b/a,
w = a/b, so that zw = 1.

Let us delete these two-dimensional orbits from the manifolds (1.11) and denote
the remainig manifolds by the same symbols with index 0, for example, (D × D)0

etc. For these manifolds, the representatives of the G1-orbits are the pairs indicated
in Lemma 1.1 with µ satisfying the inequalities 0 < µ < 1 or 1 < µ <∞.

Let us go from C × C to X C by (1.3) and (1.4). The images of (D × D)0,
(D′ ×D′)0, (D ×D′)0, (D′ ×D)0 will be denoted by Y+, Y−, Ω+, Ω− respectively.
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By (1.7) � (1.10) we get the folowing description of these sets (recall that they all
lie in X C : [x, x] = 1):

Y+ : [x, x] > 1, Im
x3

x2

< 0,

Y− : [x, x] > 1, Im
x3

x2

> 0,

Ω+ : −1 < [x, x] < 1, Imx1 > 0,

Ω− : −1 < [x, x] < 1, Imx1 < 0,

The pairs (−iµ, iµ) and (−iµ, iµ−1) go to the points in X C lying on the curves

yt = (0, i sinh t, cosh t), ωt = (i sin t, 0, cos t), (1.12)

where µ = e−t, µ = tan (π/4 − t/2), respectively. Representatives of the G1-orbits
are the points:

yt : t > 0, for Y+,

yt : t < 0, for Y−,
ωt : 0 < t < π/2, for Ω+,

ωt : −π/2 < t < 0, for Ω−.

The Lie algebra g of the group G = SO0(1, 2) consists of matrices

X =

 0 ξ1 ξ2

ξ1 0 −ξ0

ξ2 ξ0 0

 .

Let us take the corresponding basis in g:

L0 =

 0 0 0
0 0 −1
0 1 0

 , L1 =

 0 1 0
1 0 0
0 0 0

 , L2 =

 0 0 1
0 0 0
1 0 0

 .

Let us give a remark about the manifolds Y±. The Killing form of g is B(X, Y ) =
tr (XY ), so that B(X,X) = 2(−ξ2

0 +ξ2
1 +ξ2

2). Consider in g two light cones (forward
and backward) C+ and C− de�ned by the inequalities −ξ2

0 + ξ2
1 + ξ2

2 < 0, ±ξ0 > 0.
These domains are invariant with respect to AdG. In the complexi�cation GC let
us take the two sets exp (iC±). It turns out that

Y± = X · exp (iC±).

Moreover, it turns out that the subsets Γ± = G · exp (iC±) of GC are semigroups
(Olshanski).
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Now let us consider a complexi�cation GC of the group G. It consists of complex
matrice of the third order preserving the form [x, y] in C3. Let us take the following
matrices in GC:

γt = eitL0 =

 1 0 0
0 cosh t −i sinh t
0 i sinh t cosh t

 ,

δt = eitL2 =

 cos t 0 i sin t
0 1 0

i sin t 0 cos t

 . (1.13)

The curves (1.12) are obtained when we multiply the point x0 = (0, 0, 1) ∈ X by
these matrices, i. e. yt = x0γt, ωt = x0δt.

Therefore, any point x in Y± is x0γtg, where t > 0 for Y+ and t < 0 for Y−, and
any point x in Ω± is x0δtg, where 0 < t < π/2 for Ω+ and −π/2 < t < 0 for Ω−.
Here g ranges over G.

Let us return to the G1-orbits of the pairs (0, ∞) and (∞, 0) which were deleted
fromD×D′ andD′×D respectively. Under the map (1.3) the pairs (0, ∞) and (∞, 0)
go respectively to the points ωπ/2 = (i, 0, 0) = ix1 and ω−π/2 = (−i, 0, 0) = −ix1,
where x1 = (1, 0, 0). Therefore, the map (1.3) carries these G1-orbits to the G-orbits
of the points ix1 and −ix1. Both points ±x1 belong to the hyperboloid [x, x] = −1.
It consists of two the sheets L±, so that x1 ∈ L+ and −x1 ∈ L−. Therefore the
G-orbits are iL±. They lie on the boundary of the manifolds Ω± respectively. Each
of them can be identi�ed with the Lobachevsky plane L = G1/K1 = G/K.

All four complex manifolds (of real dimension 4) Y±, Ω± are adjoint to the
one-sheeted hyperboloid X (of real dimension 2). On their turn, each of the two
manifolds Ω+ and Ω− are adjoint to one sheet (to iL+ and iL−) of the two-sheeted
hyperboloid [x, x] = −1 (of real dimension 2). Relative to the Lobachevsky plane
iL± the manifold Ω± is a �complex crown� (after Akhiezer�Gindikin).

Let us assign to any point x in the manifolds Y±, Ω± its third coordinate x3 ∈ C.

Lemma 1.2 Under the map x 7→ x3 the image of the manifold Y± is the whole
complex plane C with the cut [−1, 1], the image of the manifold Ω± is the whole
complex plane with cuts (−∞, 1] and [1, ∞).

Proof. For a point x ∈ X C with coordinates z, w, see (1.3), we have

x3 + 1

x3 − 1
=

1 + iz

1− iz
· 1− iw

1 + iw
. (1.14)

The function z 7→ ζ = (1 + iz)/(1 − iz) maps the disk D onto the right half-
plane Re ζ > 0, and its exterior D′ onto the left half-plane Re ζ < 0. Therefore, if
(z, w) ∈ D × D or (z, w) ∈ D′ × D′, then both fractions in the right-hand side of
(1.14) range over either the left or the right half-plane. Their product ranges over
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the whole plane C with cut (−∞, 0]. If in addition z 6= w, then this product is not
equal to 1. Hence x3 ranges over C without [−1, 1].

If (z, w) ∈ D×D′ or (z, w) ∈ D′×D, then both fractions in the right-hand side
of (1.14) range over di�erent half-planes. Therefore, their product ranges over the
whole of C with cut [0, ∞), hence x3 ranges over C without (−∞, −1] and [1, ∞).
Since we consider Ω±, but not D × D′ and D′ × D, we have to exclude in (1.14)
pairs (z, w) for which w = 1/z. But it does not make the image smaller. Indead, if
the �rst fraction in the right-hand side of (1.14) has value reiα, −π/2 < α < π/2,
then the second fraction has value −r−1eiα, so that their product is equal to −e2iα.
The intersection of the sets of these points over all α is empty. �

Let M(y) be a holomorphic function on the manifold Y± and let N(x) be its
limit values at the hyperboloid X :

M(x) = lim
y→x

M(y), y ∈ Y±, x ∈ X .

We shall assume that y tends to x �along the radius�, i. e. if y ∈ Y± and x ∈ X have
horospherical coordinates (z, w) and (u, v) respectively, then

z = e−tu, w = e−tv (1.15)

and t→ ±0. These equalities (1.15) give (for γt, see (1.13)):

y = xγt. (1.16)

Lemma 1.3 Let M(y) depend only on y3: M(y) = N(y3). By Lemma 1.2 the
function N(λ) is analytic on the plane C with cut [−1, 1]. Then one has

M(x) = N(x3 ∓ i0x2).

Proof. Let y and x be connected by (1.15). Then by (1.16) we have

y3 = −i sinh t · x2 + cosh t · x3.

Therefore, y3 = −it · x2 + x3 + o(t), when t→ 0. Hence the lemma. �

Now let M(ω) be a holomorphic function on the manifold Ω± and let M(x) be
its limit values on the hyperboloid X :

M(x) = lim
y→x

M(ω).

Here we assume similarly that ω tends to x �along the radius�, i. e. if ω ∈ Ω± and
x ∈ X have horospherical coordinates (z, w) and (u, v) respectively, then

z = e−tu, w = etv (1.17)

and t→ ±0.

1707



Âåñòíèê ÒÃÓ, ò. 16, âûï. 6, ÷. 2, 2011

Lemma 1.4 Let M(ω) depend only on ω3: M(ω) = N(ω3). By Lemma 1.2 the
function N(λ) is analytic on the plane C with cuts (−∞, −1] and [1, ∞). Then

M(x) = N(x3 ± i0 · x1x3) (1.18)

Proof. By (1.17) and (1.18) we have

ω3 =
1 + uv

i(e−tu− etv)
.

Let us substitute here the expressions of u, v in terms of x, see (1.2). Taking into
account the equality x2

1 + 1 = (x3 + ix2)(x3 − ix2), we obtain

ω3 =
x3

cosh t− i sinh t · x1

. (1.19)

When t→ 0, it behaves as x3(1 + itx1) up to terms of order t2. Hence the lemma. �

It is convenient to represent it using a cone in C4. Let us equip C4 with the
bilinear form

[[x, y]] = −x0y0 − x1y1 + x2y2 + x3y3

(we add to vectors x in C3 the coordinate x0). Let C be the cone in C4 de�ned by
[[x, x]] = 0, x 6= 0. Then the complex hyperboloid X C is the section of the cone C
by the hyperplane x0 = 1. Looking at (1.3), consider the set Z of points

ζ =
1

2
(i(z − w), z + w, i(1− zw), 1 + zw) , (1.20)

where z, w ∈ C. It is the section of the cone C by the hyperplane −ix2 +x3 = 1, i. e.
the hyperplane [x, ξ0] = 1, where ξ0 = (0, 0, ,−i, 1). The map ζ 7→ x = ζ/ζ0 maps
Z\{z = w} in X C, it gives just the horospherical coordinates.

The manifolds (1.11) without the points corresponding to∞, lie in Z: in order to
obtain D ×D or D′ ×D′, one has to the inequality [ζ, ζ] > 0 to add the inequality
Im (ζ3/ζ2) < 0 or Im (ζ3/ζ2) > 0, respectively, and in order to obtain D × D′ or
D′×D, one has to the inequality [ζ, ζ] < 0 to add the condition that the imaginary
part of the determinant ∣∣∣∣ ζ0 ζ1

ζ0 ζ1

∣∣∣∣
is less or greater than zero.

[The de�nition just given of the manifold D ×D is the de�nition of the Cartan
domain of type IV D(p) for p = 2. Indeed, D(p) is de�ned as follows: we equip
Cn, n = p + 2, with the form [x, x] = −x2

1 − . . . − x2
p + x2

n−1 + x2
n. Let ξ

0 =
(0, . . . , 0,−i, 1). Then D(p) consists of points ζ ∈ Cn such that

[ζ, ζ] = 0, [ζ, ζ] > 0, [ζ, ξ0] = 1, Im (ζn/ζn−1) < 0.
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Any point ζ ∈ D(p) can be written as

ζ = (ζ1, . . . , ζp,
a− 1

2i
,
a+ 1

2
), a = ζ2

1 + . . .+ ζ2
p ,

where ζ1, . . . , ζp satisfy the inequalities:

ζ1ζ1 + . . . ζpζp <
aa+ 1

2
< 1,

so that D(p) can be identi�ed with a bounded domain in Cp.]

Let us assign to a point x = (x0, x1, x2, x3) in C4 the matrix

x =

(
x0 + ix1 x2 + ix3

x2 − ix3 x0 − ix1

)
. (1.21)

Its determinant is equal to −[[x, x]]. In particular, for a point ζ ∈ Z, given by
(1.20), one gets the matrix

ζ = i

(
z 1
−zw −w

)
= i

(
1
−w

)(
z 1

)
.

These matrices ζ are characterized by det ζ = 0, ζ12 = i.
The group G1×G1 acts on the space of matrices (1.21): to an element (g1, g2) ∈

G1 ×G1 corresponds the linear transformation:

x 7→ g−1
1 xg2. (1.22)

It is given by a real matrix of order 4. We obtain a homomorphism of the group
G1 × G1 onto the group SO0(2, 2). The kernel is the group of order 2 consisting of
the pairs (E, E), (−E, −E). The diagonal of G1 × G1, i. e. the set of pairs (g, g),
g ∈ G1, goes to the subgroup SO0(1, 2) = G, it preserves x0 = (1/2) trx.

Consider the following action of G1 ×G1 on Z:

ζ 7→ g−1
1 ζg2

−i(g−1
1 ζg2)12

(apply �rst the linear action (1.22) and return then to the section Z along a line
passing through the origin). This is the fractional linear action:

z 7→ z · g2, w 7→ w · g1.

The homomorphism G1 ×G1 → SO0(2, 2) can be extended to the complexi�cations
(we obtain a homomorphism SL(2,C) × SL(2,C) → SO(4,C)). Let us take in the
complexi�cation GC

1 ×GC
1 the pairs(

eitL0 , eitL0
)
and

(
e−itL0 , eitL0

)
.
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Under the above homomorphism these pairs go to the matrices:
1 0 0 0
0 1 0 0
0 0 cosh t −i sinh t
0 0 i sinh t cosh t

 and


cosh t i sinh t 0 0
i sinh t cosh t 0 0

0 0 1 0
0 0 0 1

 .

The �rst one is obtained by bordering of the matrix γt, see (1.13). The second
one appears in the proof of Lemma 1.4. Indeed, let us multiply a vector (row)
(1, x1, x2, x3) in C, such that the vector x = (x1, x2, x3) belongs to X , by this matrix
and then divide by the coordinate with index zero, we just get a vector ω ∈ Ω±

whose horospherical coordinates are connected with the horospherical coordinates
of x by (1.17), namely,

ω =
1

cosh t− ix1 · i sinh t
(x1 · cosh t+ i sinh t, x2, x3) . (1.23)

It includes (1.19). The curve (1.23) with x = x0, i. e. the curve (i tanh t, 0, 1/cosh t),
is in fact the curve ωt, see (1.12), with another parameter.

� 2. On the analytic continuation of spherical functions

First we consider spherical functions Ψσ,ε(x), σ = −1/2 + iρ, ε = 0, 1, on the
hyperboloid X of the continuous series. We study the analytic continuation of these
functions to the complex manifolds Ω±, de�ned in � 1.

In fact, we may consider the spherical functions Ψσ,ε on the hyperboloid X with
generic σ: σ ∈ C, σ /∈ Z, not only with σ = −1/2 + iρ.

These spherical functions Ψσ,ε(x), σ ∈ C, ε = 0, 1, were computed in [4], [5], they
are linear combinations of Legendre functions of the �rst kind of ±x3 (x3 being the
third coordinate of x):

Ψσ,ε(x) = − 2π

sinσπ
[Pσ(−x3) + (−1)εPσ(x3)] . (2.1)

The Legendre function Pσ(z) is analytic in the complex plane C with cut (−∞, −1].
At this cut, we de�ne it as half the sum of the limit values form above and below:

Pσ(c) =
1

2
[Pσ(c+ i0) + Pσ(c− i0)] , c < −1.

Therefore, the combination Pσ(−z)+(−1)εPσ(z) is analytic in C with cuts (−∞, −1]
and [1, ∞). Precisely these cuts appear in Lemmas 1.2 and 1.4 in treating the
complex manifolds Ω± adjoint to X .
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So, if we want to continue the functions Ψσ,ε(x) analytically, then naturally Ω±

should be taken for that purpose. Hence let us consider functions on Ω± de�ned by
the same formula (2.1) with x replaced with ω:

Ψσ,ε(ω) = − 2π

sinσπ
[Pσ(−ω3) + (−1)εPσ(ω3)] . (2.2)

These functions are analytic on Ω±. Let us determine their limit values at X .

First consider the function Pσ(ω3) on Ω±. By Lemma 1.4 its limit values at X
are:

limPσ(ω3) =


Pσ(x3), x3 > −1,

Pσ(x3 ∓ i0x1), x3 < −1,
(2.3)

when ω → x and ω ∈ Ω±. It follows from [1] 3.3 (10) that the function Pσ(z) has
the following limit values at the cut (−∞, −1]:

Pσ(c± i0) = e±iσπPσ(−c)− 2

π
sinσπ ·Qσ(−c),

where c < −1 and Qσ is the Legendre function of the second kind. Therefore, by
(2.3) we have for ω → x, ω ∈ Ω± and x3 < −1:

limPσ(ω3) =


e∓iσπPσ(−x3)− 2

π
sinσπQσ(−x3), x1 > 0,

e±iσπPσ(−x3)− 2

π
sinσπQσ(−x3), x1 < 0.

It can be written as

limPσ(ω3) = Pσ(c)∓ sgnx1 · isinσπ · Pσ(−x3).

We see that the limit values of Pσ(ω3) as ω → x coincide with Pσ(x3) for x3 > −1
only. In order to obtain Pσ(x3) one has to take half the sum of the limit values from
both manifolds Ω+ and Ω−.

Similarly this goes for Pσ(−y3).

Thus, the limit values at X of the function Ψσ,ε(ω) on Ω± de�ned by (2.2)
coincide with the spherical function Ψσ,ε(x) for −1 < x3 < 1 only. The spherical
function Ψσ,ε(x) is even in x1, but the limit function lim Ψσ,ε(ω) does not. In order
to obtain the spherical function Ψσ(x) from the function Ψσ,ε(ω), one has to use
both manifolds Ω± and to take half the sum of the limit values from Ω+ and Ω−:

Ψσ,ε(x) =
1

2

∑
±

lim Ψσ,ε(ω),

where the limit is taken when ω → x, ω ∈ Ω±, x ∈ X .
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Now we consider the spherical functions Ψn,± of the holomorphic and anti-
holomorphic discrete series on X . Here n ∈ N = {0, 1, 2, . . .}. The signs “+′′ and “−′′
correspond to the holomorphic and the anti-holomorphic series respectively. These
functions are expressed [4] in terms of Legendre functions of the second kind:

Ψn,±(x) = 4Qn(x3 ∓ i0 · x2).

Comparing it with Lemma 1.3, we see that the spherical function Ψn,± is continued
analytically on the manifold Y± as the function

Ψn(y) = 4Qn(y3).
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