ПЕРИОДИЧЕСКИЕ КОЛЕБАНИЯ В k-ПАРАМЕТРИЧЕСКИХ СИСТЕМАХ УПРАВЛЕНИЯ 1

© М.Г. Юмагулов

Рассматриваются системы, динамика которых описывается дифференциальными уравнениями вида

$$\frac{dx}{dt} = A(t, \mu)x + \varphi(x, t, \mu), \quad x \in \mathbb{R}^N, \quad N \geqslant 2,$$
(1)

зависящими от векторного параметра $\mu \in R^k$ $(1 \le k \le N)$ и с ω -периодической по переменной t правой частью; здесь $A(t,\mu)$ — квадратная матрица, непрерывная по совокупности переменных, а функция $\varphi(x,t,\mu)$ удовлетворяет соотношению $\|\varphi(x,t,\mu)\| = o(\|x\|)$ при $\|x\| \to 0$. Система (1) при всех значениях μ имеет нулевое решение x = 0.

Предполагается, что число 1 является мультипликатором линейной системы $x' = A(t, \mu_0)x$ кратности k. В этом случае значение μ_0 является бифуркационным для системы (1): при близких к μ_0 значениях μ у этой системы могут возникать малые по амплитуде ненулевые периодические решения. К задаче о бифуркации малых решений приводят многие теоретические и прикладные проблемы механики, теории управления, биологии и др.

Случай k=1 хорошо изучен: здесь получены эффективные достаточные признаки рождения малых решений, предложены схемы приближенного их построения, проведен анализ устойчивости и др. Существенно меньше известно результатов, относящихся к случаю $k \geqslant 2$. В докладе рассматривается именно этот случай.

Задача о периодических решениях уравнения (1) различными способами может быть сведена к равносильному операторному уравнению

$$y = B(\mu)y + b(y, \mu), \quad y \in H, \tag{2}$$

где $B(\mu)$ — действующий в гильбертовом пространстве H линейный вполне непрерывный оператор, а нелинейный оператор $b(y,\mu)$ удовлетворяет соотношению $\|b(y,\mu)\| = o(\|y\|)$ при $\|y\| \to 0$. Оператор $B(\mu_0)$ имеет собственное значение 1 кратности k.

Ниже через $S(\mu_0, \varepsilon)$ и $S(y_0, \varepsilon)$ будем обозначать шары радиуса $\varepsilon > 0$ с центрами в точках μ_0 и y_0 в пространствах R^k и H соответственно.

О п р е д е л е н и е 1. Значение μ_0 назовем правильной точкой бифуркации уравнения (2) по направлению вектора $e \in H$, если существует функция $\delta(\varepsilon)$, $\delta(\varepsilon) = o(\varepsilon)$ при $\varepsilon \to 0$, такая, что при любом $\varepsilon > 0$ найдется значение параметра $\mu = \mu_{\varepsilon} \in S(\mu_0, \varepsilon)$, при котором уравнение (2) имеет ненулевое решение $y_{\varepsilon} \in S(\varepsilon e, \delta(\varepsilon))$. Векторы y_{ε} и значения μ_{ε} назовем бифурцирующими решениями уравнения (2). Правильная точка бифуркации соответствует тому, что уравнение (2) имеет семейство бифурцирующих решений μ_{ε} и y_{ε} так, что $\mu_{\varepsilon} \to \mu_0$ и $\|y_{\varepsilon} - \varepsilon e\| = o(\varepsilon)$ при $\varepsilon \to 0$.

Из общей теории локальных бифуркаций векторных полей известно, что правильные точки бифуркации уравнения (2) имеет смысл искать только по направлению собственных векторов оператора $B(\mu_0)$, отвечающих собственному значению 1.

 $^{^{1}}$ Работа выполнена при поддержке РФФИ (проект № 06-01-72552-НЦНИЛ а).

Ниже для простоты изложения параметр μ будем считать двумерным, а именно $\mu = (T, \lambda)$, где T и λ — скалярные параметры. Тогда уравнение (2) примет вид

$$y = B(T, \lambda)y + b(y, T, \lambda). \tag{3}$$

Пусть $\mu_0 = (T_0, \lambda_0)$ и оператор $B(T_0, \lambda_0)$ имеет собственное значение 1 кратности 2. Пусть e, g — это соответствующие линейно независимые собственные векторы.

Для определенности будем исследовать уравнение (3) на наличие правильной бифуркации по направлению вектора e. Пусть e^* и g^* — это собственные векторы, отвечающие собственному значению 1 сопряженного оператора $B^*(T_0, \lambda_0)$, которые выбраны в соответствии с условиями $(e, e^*) \neq 0$, $(g, g^*) \neq 0$, $(e, g^*) = (g, e^*) = 0$.

Теорема 1. Пусть выполнено условие:

$$\det \begin{bmatrix} (B'_T(T_0, \lambda_0)e, e^*) & (B'_{\lambda}(T_0, \lambda_0)e, e^*) \\ (B'_T(T_0, \lambda_0)e, g^*) & (B'_{\lambda}(T_0, \lambda_0)e, g^*) \end{bmatrix} \neq 0.$$

Тогда значение (T_0, λ_0) является правильной точкой бифуркации уравнения (3) по направлению вектора e.

При доказательстве теоремы 1 разработана процедура приближенного построения бифурцирующих решений уравнения (3). Приводятся приложения к исследованию бифуркации вынужденных колебаний и бифуркации Андронова-Хопфа в системах автоматического управления.

Юмагулов Марат Гаязович Сибайский институт (филиал) Башкирского государственного ун-та Россия, Сибай (Башкортостан) e-mail: yum_mg@mail.ru

Поступила в редакцию 25 апреля 2007 г.

ПОСТРОЕНИЕ КВАЗИОПТИМАЛЬНЫХ УПРАВЛЕНИЙ ПАРАМЕТРАМИ ВИБРОЗАЩИТНОГО ПОДВЕСА ПРИ СЛУЧАЙНОМ ВОЗМУЩЕНИИ

© И.В. Юшкин

Рассмотрена задача управления многомерным виброзащитным подвесом. Общий вид уравнений колебаний многомассовой системы, в предположении малости движений, записывается в матричном виде следующим образом:

$$\mathbf{M}\ddot{\mathbf{x}} + \mathbf{C}\mathbf{U}_{\lambda} + \mathbf{D}\mathbf{U}_{\dot{\lambda}} + f(\dot{\mathbf{x}}, \mathbf{x}, t) = 0,$$