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A parallel algorithm for symbolic solving partial differential equations by means of
Laplace-Carson transform is produced. The problem is reduced to solving linear
algebraic systems with polynomial coefficients, for which efficient parallel algorithms
exist. It permits to construct a fast parallel algorithm for systems of partial differential
equations. An algorithm includes a procedure to obtain compatibility conditions for
initial data.

1 Introduction

An application of Laplace and Laplace—Carson transform is useful in many problems of solving
differential equations (for example [1, 2, 3, 4]) It reduces a system of partial differential equations
to an algebraic linear system with polynomial coefficients. Parallel algorithms for solving such
systems are being developed actively (for example, [5, 6]). It enables to construct parallel
algorithms for solving linear partial differential equations with constant coefficients and systems
of equations of various order, size and types. The application of Laplace—Carson transform
permits to obtain compatibility conditions in symbolic way for many types of PDE equations
and systems of PDE equations.

The steps, at which parallel calculations are possible and reasonable we denote by term
Block. If indexes are contained, the ways of parallelization are pointed by them.

2 Input data

Denote m = (my,...,m,). Consider a system
K M ‘ om
J — f.
DD D) DL IR} 0
k=1 m=0 m
where j =1,..., K, ug(z), k=1,..., K, — are unknown functions of x = (x1,...,2,) € R},
f; € S, aL, arereal numbers, m is the order of a derivative, and k& —the number of an unknown
function. Here and further summing by m = (my,...,m,) is executed for m; +...+m, =m.
We consider all input functions reducible to the form;
; ; i . I;+1
fi(t) = fj(x), o5 <t < tj+1, i=1,..., 1,z = 0,t/"" = oo,
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where

S
) =) P)eh', i=1,...1; j=1,...k (2)
s=1

and P (z) = Y2 cia'.

Denote by A a class of functions which are reducible to the form (2).

We solve a problem with initial conditions for each variable. Introduce notations for them.
Denote by I'V a set of vectors v = (y1,...,7,) such that v, =1, 7, =0,if i < v, and
equals 0 or 1 in all possible combinations for ¢ > v. The number of elements in 'V equals
vt

Denote 3= (B1,...,0,), Bi=0,...,m;, aset of indexes such that the derivative of u*(x)
of the order f; with respect to the variables with numbers i equals ugﬂ(:c(”) at the point
x = 27 with zeros at the positions p for which the coordinates «, of v equal 1. For example,
if zeros stand only at the places with the numbers 1,2,3, then v = (1,1,1,0,...,0). Functions
ugﬁ(xm) must also belong to A . To be short we shall not write down the expressions for
ub ().

The algorithm component is the definition of compatible initial conditions. The system (1)
is to be solved under such conditions.

Data file contains the coefficients, the initial conditions and the right-hand members f;,
I=1,...,K.

The data for functions f; consists of the polynomial coefficients, parameters of exponents,
the bounds of smoothness intervals.

3 Laplace—Carson transform

Consider the space S of functions f(z), = (z1,...,2,) € R}, Rt = {2z : 2,2 0,1 =
1,...,n}, for which M > 0,a = (ay,...,a,) € R", a; >0, i =1,...,n, exist such that for

all x € R the following is true: |f(z)] < Me®™, ax =) a;z;.
i=1

On the space S the Laplace-Carson transform (LC) is defined as follows:
LC f@) s o) =1 [ e fla)da,
0
p=(p1,--spn); P =D1---Pn,
pr = Zpixi, dr = dx; . ..dx,.
i=1

LC is performed symbolically at the class A.

4 Parallel LC algorithm

4.1 LC of a system

Let LC : u* — U, ufm(x(”) — Ugﬁ(p(”)), fj = Fj, the notation p(? is correspondent to the
notation (7). Denote by |||/ the “length” of 4 — the number of units in v, p™ = p{™ ... pm= .
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Block 10
The LC of the left-hand side of the system (1) excluding images of initial conditions is
written formally.

Block 1r
r runs trough the set of multiindexes of ufj p(z").
Then am
LC : TP T ug(x) —
mUk + Z Z Z Hvll ma - Bi—m pnT B"_W"Ugﬁ(pm).
v=1 B,=0 ~el'¥
Denote

mk—ZawZ S ST ()BT g (),

v=1 B,=0 ~eI¥

As a result of Laplace-Carson transform of the system (1) according to initial conditions
we obtain an algebraic system relative to U*

M

K M K
YD " URp) =F - o j=1,... K (3)

k=1 m=0 m k=1 m=0

Block 2k
k runs from 1 to K.

These blocks performs LC of the right-hand parts of (1). A allows a further parallelization
of calculations.

4.2 Solution of algebraic system

Block 3

As a result of Laplace-Carson transform of the system (1) according to initial conditions
we obtain the algebraic system (3) relative to U .

Efficient methods of parallel solving such systems are developed (for example [5, 6]).

At this stage the problem of definition of compatibility conditions arises (see blocks 4s,5).
With respect to compatible conditions we use the inverse Laplace—Carson transform and obtain
the correct solution of PDE system.

4.3 Compatibility conditions

Call a rational fraction "a proper fraction” if the degree of each variable (over C) in numerator
is less then its degree in denominator.

Call a set of equations, defined by conditions

e the solutions of algebraic system may be represented as sums of proper fractions with
exponential coefficients;
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e the denominators of these proper fractions may be reduced to a product of linear
functions.
the class B.

(Note that the class B does not exhaust all cases that admit pure symbolic computations.)

Denote by D the determinant of the system (3), D; the maximal order minors of the
extended matrix of (3). A case when there is a set Q of zeros of D with infinite limit point
at Repp > 0, k = 1,...,n, is of most interest. Solving the system (1) we obtain U* as
fractions with D in the denominators. The inverse Laplace—Carson transform is possible if ay ,
k=1,...,n, exist such that these functions are holomorphic in the domain Rep; > ay . So we
make a demand: D; has zeros at Q of multiplicity not less than multiplicity of corresponding
zeros of D . This demand produces requirements to the LLC images of initial conditions functions,
and after LC ~! transform — to initial conditions. They turn to be dependent. We obtain the
so-called compatibility conditions.

Block 4s
s depends upon the number of relations, from which the compatibility conditions arise.

The blocks calculate the values of numerators at zeros of denominators.

Block 5

The block implements parallel solving of the system of equations, produced by relations for
compatibility conditions.

Block 6k

The blocks perform the LC ~! of U*. Note, that the steps of calculation of multivariate
LC ! are produced sequentially.

5 Example

We take a simple example to demonstrate the method and the places where parallelization is
possible.

It is convenient here to change notations for unknown functions, their Laplace transform,
variables, initial conditions.

Example 1

Take a system of two equations with two unknown functions on Ri.

of 99 _
wtoa = U

f=1y); g=9(zy).
Initial conditions: f(0,y) = a(y); f(z,0) =0b(z); ¢(0,y) =c(y); g(x,0) =d(x),
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Block 1r , r=1,2.

Block 2k , k=1,2.
LC:
flz,y) = ulp,q), g(z,y)— v(p,q).

As a result of LC we obtain the algebraic system:
pu—pa(q) +qu—qy(p) = 1/p,  qu—qB(p) +pv —pd(q) =1/q.

Block 3
Then

_ —awH B¢+ 6 —ypg P ¢+ (o= B¢ — (0p” —14*)pg
pa(p* — ¢%)

P — ’
The denominator D: D(p,q) = pq(p* — ¢*).

Block 4s , s—1.

The set of zeros of D with infinite limit points at the right half-plane is ¢ =p.
Substituting ¢ = p into the nominator of u and v we obtain the compatibility condition:
a—pF+v—0=0.

Block 5
For example we may take 5 =0; ~ = ]%; 0= %; a=0.
Then
b2 Uﬁ_p+2p2+q+2q2+2pq
p+q’ pa(p +q) ‘
Block 6s , s=1,2.
LC—1:
foo 2y, y<uw,
B 2];7 Yy 2 z,
_ [ @ty y<uz,
y2+z),  y=uw
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Kawuesvie caosa: mapasiebHble aJTOPUTMBI, KOMIIBIOTEPHAsT ajrebpa, ypaBHEHUS B
JaCTHBIX IPOM3BOAHBIX, HTpeobpasopanne Jlamnaca—Kapcona, ycaoBHS COIVIACOBAHHO-
CTHU.

[Ipencrapmen mapaJulebHBIN aJITOPUTM CHMBOJLHOIO PENIeHHS CHCTEMBI YPABHEHUM
C YaCTHBLIMU [IPOU3BOJAHBIMKA C IIOMOIILIO Ipeobpaszosanus Jlamnnaca—Kapcona. 3agaga
CBOIUTCS K PEIIEHUIO JTHHEHHOH aarebpamueckoil CHCTEMBI C MOJIUHOMHAIBHBIMA KO-
s¢pdunmenTamu, st KOTOPOH CYIIECTBYIOT OBICTPBIE MTAPAJIICIbHBIE AJITOPUTMBI. 3TO
ITO3BOJISIET CKOHCTPYHPOBATHL OBICTPRIN MMapaJsiIebHbIi aJropuT™ s cucreM mudde-
PEHIIMAJBHBIX YPABHEHNN ¢ YaCTHBIMHU TpOoU3BOAHBIME. COCTABHON YACTHIO aJTOPUTMA
ABJIAETCH TIPOLEAYypa MOJyUYEeHU YCJAOBUN COTJIACOBAHHOCTH JIJI HAYAJBHBIX YCJIOBUA.
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