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A parallel algorithm for symbolic solving partial di�erential equations by means of

Laplace�Carson transform is produced. The problem is reduced to solving linear

algebraic systems with polynomial coe�cients, for which e�cient parallel algorithms

exist. It permits to construct a fast parallel algorithm for systems of partial di�erential

equations. An algorithm includes a procedure to obtain compatibility conditions for

initial data.

1 Introduction

An application of Laplace and Laplace�Carson transform is useful in many problems of solving
di�erential equations (for example [1, 2, 3, 4]) It reduces a system of partial di�erential equations
to an algebraic linear system with polynomial coe�cients. Parallel algorithms for solving such
systems are being developed actively (for example, [5, 6]). It enables to construct parallel
algorithms for solving linear partial di�erential equations with constant coe�cients and systems
of equations of various order, size and types. The application of Laplace�Carson transform
permits to obtain compatibility conditions in symbolic way for many types of PDE equations
and systems of PDE equations.

The steps, at which parallel calculations are possible and reasonable we denote by term
Block. If indexes are contained, the ways of parallelization are pointed by them.

2 Input data

Denote m̃ = (m1, . . . ,mn) . Consider a system

K∑
k=1

M∑
m=0

∑
m̃

ajm̃k
∂m

∂m1x1 . . . ∂mnxn
uk(x) = fj(x), (1)

where j = 1, . . . , K, uk(x) , k = 1, . . . , K, � are unknown functions of x = (x1, . . . , xn) ∈ Rn
+ ,

fj ∈ S , ajm̃k are real numbers, m is the order of a derivative, and k �the number of an unknown
function. Here and further summing by m̃ = (m1, . . . ,mn) is executed for m1 + . . .+mn = m .

We consider all input functions reducible to the form;
fj(t) = f ij(x), xij < t < ti+1

j , i = 1, . . . , Ij, x
1
l = 0, t

Ij+1
j =∞,
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where

f ij(t) =

Sij∑
s=1

P i
js(t)e

bijst, i = 1, . . . , Ij, j = 1, . . . , k, (2)

and P i
js(x) =

∑Lijs
l=0 c

ji
slx

l .
Denote by A a class of functions which are reducible to the form (2).
We solve a problem with initial conditions for each variable. Introduce notations for them.

Denote by Γν a set of vectors γ = (γ1, . . . , γn) such that γν = 1 , γi = 0 , if i < ν , and γi
equals 0 or 1 in all possible combinations for i > ν . The number of elements in Γν equals
2ν−1 .

Denote β = (β1, . . . , βn), βi = 0, . . . ,mi , a set of indexes such that the derivative of uk(x)
of the order βi with respect to the variables with numbers i equals ukβ,γ(x

(γ)) at the point
x = xγ with zeros at the positions µ for which the coordinates γµ of γ equal 1 . For example,
if zeros stand only at the places with the numbers 1, 2, 3 , then γ = (1, 1, 1, 0, . . . , 0) . Functions
ukβ,γ(x

(γ)) must also belong to A . To be short we shall not write down the expressions for

ukβ,Γ(x(γ)) .
The algorithm component is the de�nition of compatible initial conditions. The system (1)

is to be solved under such conditions.
Data �le contains the coe�cients, the initial conditions and the right-hand members fj ,

l = 1, . . . , K .
The data for functions fj consists of the polynomial coe�cients, parameters of exponents,

the bounds of smoothness intervals.

3 Laplace�Carson transform

Consider the space S of functions f(x) , x = (x1, . . . , xn) ∈ Rn
+ , Rn

+ = {x : xi > 0, i =
1, . . . , n} , for which M > 0, a = (a1, . . . , an) ∈ Rn , ai > 0 , i = 1, . . . , n , exist such that for

all x ∈ Rn
+ the following is true: |f(x)| 6Meax , ax =

n∑
i=1

aixi .

On the space S the Laplace�Carson transform (LC) is de�ned as follows:

LC : f(x) 7→ F (p) = p1

∫ ∞
0

e−pxf(x)dx,

p = (p1, . . . , pn), p1 = p1 . . . pn,

px =
n∑
i=1

pixi, dx = dx1 . . . dxn.

LC is performed symbolically at the class A .

4 Parallel LC algorithm

4.1 LC of a system

Let LC : uk 7→ Uk, ukβ,γ(x
(γ)) 7→ Uk

β,γ(p
(γ)), fj 7→ Fj , the notation p(γ) is correspondent to the

notation x(γ) . Denote by ‖γ‖ the �length� of γ � the number of units in γ , pm̃ = pm1
1 . . . pmnn .
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Block 10
The LC of the left-hand side of the system (1) excluding images of initial conditions is

written formally.

Block 1r
r runs trough the set of multiindexes of ukβ,Γ(xΓ) .

Then

LC :
∂m

∂m1x1 . . . ∂mnxn
uk(x) 7→

pm̃Uk(p) +
n∑
ν=1

mν∑
βν=0

∑
γ∈Γν

(−1)‖γ‖pm1−β1−γ1
1 . . . pmn−βn−γnn Uk

β,γ(p
(γ)).

Denote

Φj
mk =

∑
m̃

ajm̃k

n∑
ν=1

mν∑
βν=0

∑
γ∈Γν

(−1)‖γ‖pm1−β1−γ1
1 . . . pmn−βn−γnn Uk

β,γ(p
(γ)).

As a result of Laplace�Carson transform of the system (1) according to initial conditions
we obtain an algebraic system relative to Uk

K∑
k=1

M∑
m=0

∑
m̃

ajm̃kp
m̃Uk(p) = Fj −

K∑
k=1

M∑
m=0

Φj
mk, j = 1, . . . , K. (3)

Block 2k
k runs from 1 to K .

These blocks performs LC of the right-hand parts of (1). A allows a further parallelization
of calculations.

4.2 Solution of algebraic system

Block 3
As a result of Laplace�Carson transform of the system (1) according to initial conditions

we obtain the algebraic system (3) relative to Uk .
E�cient methods of parallel solving such systems are developed (for example [5, 6]).
At this stage the problem of de�nition of compatibility conditions arises (see blocks 4s,5).

With respect to compatible conditions we use the inverse Laplace�Carson transform and obtain
the correct solution of PDE system.

4.3 Compatibility conditions

Call a rational fraction "a proper fraction" if the degree of each variable (over C) in numerator
is less then its degree in denominator.

Call a set of equations, de�ned by conditions
• the solutions of algebraic system may be represented as sums of proper fractions with

exponential coe�cients;
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• the denominators of these proper fractions may be reduced to a product of linear
functions.
the class B.

(Note that the class B does not exhaust all cases that admit pure symbolic computations.)
Denote by D the determinant of the system (3), Di the maximal order minors of the

extended matrix of (3). A case when there is a set Q of zeros of D with in�nite limit point
at Re pk > 0 , k = 1, . . . , n , is of most interest. Solving the system (1) we obtain Uk as
fractions with D in the denominators. The inverse Laplace�Carson transform is possible if αk ,
k = 1, . . . , n , exist such that these functions are holomorphic in the domain Re pk > αk . So we
make a demand: Di has zeros at Q of multiplicity not less than multiplicity of corresponding
zeros of D . This demand produces requirements to the LC images of initial conditions functions,
and after LC −1 transform � to initial conditions. They turn to be dependent. We obtain the
so-called compatibility conditions.

Block 4s
s depends upon the number of relations, from which the compatibility conditions arise.

The blocks calculate the values of numerators at zeros of denominators.

Block 5

The block implements parallel solving of the system of equations, produced by relations for
compatibility conditions.

Block 6k

The blocks perform the LC −1 of Uk . Note, that the steps of calculation of multivariate
LC −1 are produced sequentially.

5 Example

We take a simple example to demonstrate the method and the places where parallelization is
possible.

It is convenient here to change notations for unknown functions, their Laplace transform,
variables, initial conditions.

Example 1
Take a system of two equations with two unknown functions on R2

+ .{
∂f
∂x

+ ∂g
∂y

= x,
∂f
∂y

+ ∂g
∂x

= y,

f = f(x, y); g = g(x, y) .
Initial conditions: f(0, y) = a(y); f(x, 0) = b(x); g(0, y) = c(y); g(x, 0) = d(x),
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Block 1r , r=1,2.

a(y) 7→ α(q), b(x) 7→ β(p),

c(y) 7→ δ(q), d(x) 7→ γ(p).

Block 2k , k=1,2.
LC:

f(x, y) 7→ u(p, q), g(x, y) 7→ v(p, q).

As a result of LC we obtain the algebraic system:

pu− pα(q) + qv − qγ(p) = 1/p, qu− qβ(p) + pv − pδ(q) = 1/q.

Block 3
Then

u = −−αp
2 + βq2 + (δ − γ)pq

p2 − q2
, v = −−p

2 + q2 + (α− β)p2q2 − (δp2 − γq2)pq

pq(p2 − q2)
.

The denominator D : D(p, q) = pq(p2 − q2).

Block 4s , s=1.

The set of zeros of D with in�nite limit points at the right half-plane is q = p .
Substituting q = p into the nominator of u and v we obtain the compatibility condition:

α− β + γ − δ = 0.

Block 5

For example we may take β = 0; γ = 2
p
; δ = 2

q
; α = 0.

Then

u = − 2

p+ q
, v = −p+ 2p2 + q + 2q2 + 2pq

pq(p+ q)
.

Block 6s , s=1,2.
LC−1 :

f = −
{

2y, y < x,
2x, y > x,

g =

{
(2 + y)x, y < x,
y(2 + x), y > x.
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Êëþ÷åâûå ñëîâà: ïàðàëëåëüíûå àëãîðèòìû, êîìïüþòåðíàÿ àëãåáðà, óðàâíåíèÿ â

÷àñòíûõ ïðîèçâîäíûõ, ïðåîáðàçîâàíèå Ëàïëàñà�Êàðñîíà, óñëîâèÿ ñîãëàñîâàííî-

ñòè.

Ïðåäñòàâëåí ïàðàëëåëüíûé àëãîðèòì ñèìâîëüíîãî ðåøåíèÿ ñèñòåìû óðàâíåíèé

ñ ÷àñòíûìè ïðîèçâîäíûìè ñ ïîìîùüþ ïðåîáðàçîâàíèÿ Ëàïëàñà�Êàðñîíà. Çàäà÷à

ñâîäèòñÿ ê ðåøåíèþ ëèíåéíîé àëãåáðàè÷åñêîé ñèñòåìû ñ ïîëèíîìèàëüíûìè êî-

ýôôèöèåíòàìè, äëÿ êîòîðîé ñóùåñòâóþò áûñòðûå ïàðàëëåëüíûå àëãîðèòìû. ýòî

ïîçâîëÿåò ñêîíñòðóèðîâàòü áûñòðûé ïàðàëëåëüíûé àëãîðèòì äëÿ ñèñòåì äèôôå-

ðåíöèàëüíûõ óðàâíåíèé ñ ÷àñòíûìè ïðîèçâîäíûìè. Ñîñòàâíîé ÷àñòüþ àëãîðèòìà

ÿâëÿåòñÿ ïðîöåäóðà ïîëó÷åíèÿ óñëîâèé ñîãëàñîâàííîñòè äëÿ íà÷àëüíûõ óñëîâèé.
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