MSC 43A85, 22E46

Eigenvalues of the Berezin transform ¹

© S. V. Tsykina

Derzhavin Tambov State University, Tambov, Russia

We consider polynomial quantization on para-Hermitian symmetric spaces G/H with the pseudo-orthogonal group $G = SO_0(p,q)$. We give explicit expressions of the Berezin transform in terms of Laplace operators. For that, we compute eigenvalues of the Berezin transform on irreducible finite dimensional subspaces of polynomials on G/H

Keywords: symplectic manifolds, pseudo-orthogonal groups, polynomial quantization, Berezin transform.

We consider polynomial quantization, a variant of quantization in the spirit of Berezin, on para-Hermitian symmetric spaces G/H with pseudo-orthogonal group $G = SO_0(p,q)$. For all these spaces, the connected component H_e of the subgroup H containing the identity of G is the direct product $SO_0(p-1,q-1) \times SO_0(1,1)$, so that G/H is covered by G/H_e (with multiplicity 1, 2 or 4). The dimension of G/H is equal to 2n-4, where n=p+q, the signature is (n-2,n-2). We restrict ourselves to the spaces G/H that are G-orbits in the adjoint representation of G.

In polynomial quantization, covariant and contravariant symbols are polynomials on G/H. Explicit formulas for rank one para-Hermitian symmetric spaces were given in [1]. Our spaces G/H with group $G = SO_0(p, q)$ have $rank \ two$.

One of the main formulas in polynomial quantization is the expression of the Berezin transform in terms of Laplace operators on G/H. In order to obtain this expression one needs to know eigenvalues of the Berezin transform on irreducible finite dimensional subspaces.

Thus this paper has two goals: for our spaces G/H with group $G = SO_0(p,q)$, we first compute eigenvalues of the Berezin transform, and then we write explicit expressions of the Berezin transform in terms of Laplace operators.

Let us introduce in \mathbb{R}^n the following bilinear form:

$$[x,y] = \sum_{i=1}^{n} \lambda_i x_i y_i,$$

where $\lambda_i = 1$ for $i \leq p$, $\lambda_i = -1$ for i > p, and $x = (x_1, \dots, x_n)$, $y = (y_1, \dots, y_n)$ are vectors in \mathbb{R}^n . The group $G = SO_0(p, q)$ is the connected component of the identity

 $^{^1\}mathrm{Supported}$ by the Russian Foundation for Basic Research (RFBR): grant 09-01-00325-a, Sci. Progr. "Development of Scientific Potential of Higher School": project 1.1.2/9191, Fed. Object Progr. 14.740.11.0349 and Templan 1.5.07

in the group $\mathrm{SL}(n,\mathbb{R})$ preserving the form [x,y]. We consider that G acts on \mathbb{R}^n from the right: $x\mapsto xg$, so that we write vectors $x\in\mathbb{R}^n$ in the row form. We consider the general case p>1,q>1.

Let us introduce on G/H horospherical coordinates ξ, η where ξ and η are vectors in \mathbb{R}^{n-2} as follows.

Let \mathcal{C} be the cone [x,x]=0, $x\neq 0$ in \mathbb{R}^n . The group G acts on it transitively. Let us take in the cone two points: $s^-=(1,0,\ldots,0,-1)$, $s^+=(1,0,\ldots,0,1)$, and consider the following sections of the cone:

$$\Gamma^- = \{x_1 - x_n = 2\}, \quad \Gamma^+ = \{x_1 + x_n = 2\}.$$

These sections intersect almost all generating lines of the cone. Therefore the linear action of the group G on the cone gives rise to corresponding linear-fractional actions on Γ^- and Γ^+ . We introduce coordinates ξ on Γ^- and η on Γ^+ as follows: for points $u \in \Gamma^-$ and $v \in \Gamma^+$ we set:

$$u = u(\xi) = (1 + \langle \xi, \xi \rangle, 2\xi, -1 + \langle \xi, \xi \rangle),$$

$$v = v(\eta) = (1 + \langle \eta, \eta \rangle, 2\eta, 1 - \langle \eta, \eta \rangle),$$

where $\langle \varphi, \psi \rangle$ denotes the following bilinear form in \mathbb{R}^{n-2} :

$$\langle \varphi, \psi \rangle = \sum_{i=2}^{n-1} \lambda_i \varphi_i \psi_i.$$

Notice that

$$[u, v] = -2N(\xi, \eta),$$

where

$$N(\xi, \eta) = 1 - 2\langle \xi, \eta \rangle + \langle \xi, \xi \rangle \langle \eta, \eta \rangle.$$

These coordinates ξ , η on G/H have to satisfy the condition $N(\xi, \eta) \neq 0$.

We refer to [1] concerning covariant and contravariant symbols. The key moment is to construct explicitly an operator A, for which both covariant and contravariant symbols are written explicitly.

The quasiregular representation of G by translations on the space of polynomials on G/H is the multiplicity free direct sum of irreducible finite dimensional representations with highest weights (k+l,k-l), where $k,l \in \mathbb{N}, k \geqslant l$, acting on subspaces $\mathcal{H}_{k,l}$. The weights are taken with respect to the secondary diagonal Abelian subalgebra of the Lie algebra of G. Here $\mathbb{N} = \{0, 1, 2, \ldots\}$.

Further we use the notation:

$$a^{[r]} = a(a+1)\dots(a+r-1), \quad a^{(r)} = a(a-1)\dots(a-r+1).$$

Theorem 2.6 Let σ be the parameter labeling co- and contravariant symbols. The eigenvalues $b_{k,l}(\sigma)$ of the Berezin transform \mathcal{B}_{σ} on $\mathcal{H}_{k,l}$ are given by

$$b_{k,l}(\sigma) = \frac{(\sigma + n - 2)^{[k]}}{\sigma^{(k)}} \cdot \frac{(\sigma + m + 2)^{[l]}}{(\sigma + m)^{(l)}}.$$

In order to find these eigenvalues, it is sufficiently to trace some polynomial in $\mathcal{H}_{k,l}$. As such polynomial, we take the lowest vector

$$F = \frac{\langle \eta, \eta \rangle^l \{ (\xi_2 - \xi_{n-1}) \langle \eta, \eta \rangle - (\eta_2 - \eta_{n-1}) \}^{k-l}}{N(\xi, \eta)^k} .$$

It is the contravariant symbol of the operator

$$A = \frac{1}{2^{k+l}\sigma^{(k)}(\sigma+m)^{(l)}} \left(\frac{\partial}{\partial \xi_2} + \frac{\partial}{\partial \xi_{n-1}}\right)^{k-l} \circ \Delta^l,$$

where

$$\Delta = \sum_{k=2}^{n-1} \lambda_k \frac{\partial^2}{\partial \xi_k^2} \,.$$

In turn, this operator A has the covariant symbol just the polynomial

$$F_1 = b_{k,l}(\sigma) \cdot F$$
.

Now we can write an expression of the Berezin transform \mathcal{B}_{σ} in terms of Laplace operators, see also [2]. For our space G/H, we have two Laplace operators Δ_2 and Δ_4 , they are differential operators of the second and of the fourth order, respectively.

Theorem 2.7 Denote m = (n-4)/2. We have

$$\mathcal{B}_{\sigma} = \frac{\Gamma(\sigma + n - 2 + k)\Gamma(\sigma + 1 - k)}{\Gamma(\sigma + n - 2)\Gamma(\sigma + 1)} \times \frac{\Gamma(\sigma + m + 2 + l)\Gamma(\sigma + m + 1 - l)}{\Gamma(\sigma + m + 2)\Gamma(\sigma + m + 1)},$$

where k,l some variables. In fact, the right hand side depends on λ_2 and λ_4 only, where $\lambda_2=2(a_1+a_2)$, $\lambda_2=16(a_1a_2-ma_1+m^2a_2)$ and $a_1=k(k+n-3)$, $a_2=l(l+1)$. Instead of λ_2 and λ_4 one has to substitute Δ_2 and Δ_4 , respectively.

References

- 1. V. F. Molchanov, N. B. Volotova. Polynomial quantization on rank one para-Hermitian symmetric spaces. Acta Appl. Math., 2004, vol. 81, Nos. 1–3, 215–232.
- 2. S. V. Tsykina. Polynomial quantization on para-Hermitian symmetric spaces with pseudo-orthogonal group of translations. International workshop "Idempotent and tropical mathematics and problems of mathematical physics Moscow, Aug. 25—30, 2007, vol. II, 63—71.