
Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

PARALLELIZED COMPUTATION OF
EXTENDED UNIVERSAL GR�OBNER BASIS

c© Dmitry Alekseevich Pavlov
Saint-Petersburg State Polytechnical University, Polytechnicheskaya 29, St.-Petersburg,

195251, Russia, Post-graduate Student of Applied Mathematics Department,
e-mail: dmitry.pavlov@gmail.com

Key words: universal Gr�obner basis; polynomial ideal; Young diagram.
The article presents an algorithm to calculate Extended Universal Gr�obner Basis
(EUGB), working on wide range of polynomial ideals. The EUGB(A) of a polynomial
ideal A is de�ned as a �nite [1] set of polynomials {fi} whose Young diagrams Y (fi)
meet the following condition: dim(L(Y (fi))∩A) = 1 (where L denotes the span of a set
of polynomials in the quotient algebra of the ideal). It is known that the EUGB contains
the Universal Gr�obner Basis. The algorithm is based on geometry of Young diagrams
in ZZd

+ , and �nds the polynomials of EUGB mostly independently, which makes it able
to run in parallel. An outline of the parallel version of the algorithm is given.

1 Notation and Background

Let K[x1, . . . , xd] be a polynomial ring over a �eld K in d variables X = {x1, . . . , xd} . The
space of monomials in these variables can be trivially identi�ed with the lattice ZZd

>0 . Here
and after, we make no di�erence between the monomials and integer vectors with nonnegative
coordinates�the elements of the lattice.

A polynomial ideal [2], generated by polynomials (f1, . . . , fs) , is de�ned as the following
in�nite set of polynomials from K[x1, . . . , xd] :

〈f1, . . . fs〉 =

{
s∑

i=1

hifi : h1, . . . , hs ∈ K[x1, . . . , xd]

}
.

It is known that the ideal can have more than one possible set of generators, each of which
is called a basis of the ideal [2].

Let � be a total order on ZZd
>0 . It is called admissible, when it meets the following condition:

• α � 0 for each α 6= 0 ;

• If α � β , then α + γ � β + γ for each γ ∈ ZZd
>0 .

We denote as LT�(f) the leading term of the polynomial f , that is, the term whose
monomial is the biggest according to the admissible ordering � .

Let A be a polynomial ideal in K[x1, . . . , xd] and � be an admissible monomial ordering.
A �nite set of polynomials G ∈ A is called a Gr�obner basis GB�(A) of A , if the leading term
of any polynomial from A is a multiple of some leading term of a basis polynomial [2]:

1405

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

〈{LT�(gi) : gi ∈ G}〉 = 〈{LT�(f) : f ∈ A}〉.

The Gr�obner basis G of the ideal A has two important properties: �rst, it generates A ,
and second, every polynomial g ∈ A has a normal form r , de�ned as a result of polynomial
reduction of g w.r.t. G with the monomial order � :

g = h1f1 + · · ·+ hsfs + r, hi, r ∈ K[x1, . . . , xd].

By the de�nition of polynomial reduction, no term of r is a multiple of any of LT�(fi) (*).

2 Coideals, quotient algebra, and FGLM algorithm

The nondivisibility condition (*) has a convenient geometrical interpretation: all monomials of
r are positioned �under� the monomial ideal, formed by {LT(fi), fi ∈ GB�(A)} . That is, they
belong to the coideal Co(GB�(A)) = ZZd

>0\〈{LT(fi)}〉 .
All possible normal forms of polynomials of A w.r.t. GB�(A) belong to L(Co(GB�(A))) ,

where L denotes the span of a set of polynomials in the quotient algebra of the ideal. We
denote it Q�(A) , as it actually determines the quotient algebra of the ideal A (�g. 2):

Q�(A) ∼ K[x1, . . . , xd]/A.

Fig. 1. The quotient algebra of an ideal generated by {y4 + xy, x2y2 + y, x3y − y3} , is in turn

generated by monomials, underlying the dashed area

1406

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

We call monomials {mi} (not necessarily �nite set) linearly independent w.r.t. A , if the
intersection of their span with A is also zero:

L({mi} ∩ A) = {0}.

The ideal A clearly do not contain any normal forms w.r.t. A , except the zero polynomial:

Q�A ∩ A = {0}.

Hence, the monomials from the coideal Co(GB�(A)) form a linearly independent set. But as
soon as we add to this set the leading monomial of any polynomial of the Gr�obner basis, we
have this polynomial within the linear span of the set:

L(Q�(A) ∪ LT(fi)) ∩ A = 〈fi〉,

and the dimension of this span is obviously equal to 1:

dim(L(Q�(A) ∪ LT(fi)) ∩ A) = 1.

This way of Gr�obner basis polynomials construction is used in FGLM [4] algorithm, which
computes a Gr�obner basis for an arbitrary monomial order �′ , given another Gr�obner basis for
another monomial order � . Basically, the FGLM algorithms incrementally builds the coideal
(starting from zero monomial), following the monomial order �′ , until the monomials are not
linearly independent. After they become linearly dependent, the corresponding polynomial of
the Gr�obner basis it calculated, and then the algorithms steps back and goes on, never adding
that �linearly dependent� monomial again.

The FGLM algorithm has a limitation: it accepts only zero-dimensional polynomial ideals�
the ideals whose quotient algebra is generated with a �nite number of monomials. In another
words, the coideal Co(GB�(A)) in this case is �nite, i.e. zero-dimensional.

3 Universal Gr�obner basis and Young diagrams

We denote as UGB(A) the universal Gr�obner basis of the ideal A : the union of all possible
Gr�obner basiss with all admissible monomial orders. Robbiano [3] has shown that the UGB is
always �nite.

We de�ne a d -dimensional Young diagram as a subset of ZZd
>0 lattice, with the only

requirement that if it contains some monomial m , it must also contain all divisors of m .
We call a Young diagram of a polynomial r ∈ A the one formed by the terms (monomials)

of r , that is, a union of monomials of r and all their divisors (�g. 3).

xy4

x3y3

y2

x6y
x4

Fig. 2. Young diagram of polynomial 5xy4 + 2x3y3 + xy2 − x6y + 8x4

1407

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

For every polynomial f ∈ UGB(A) the following condition is hold [1]:

dim(L(Y (f) ∩ A)) = 1. (1)

This condition does not guarantee that the polynomial f is a part of UGB(A) ; nevertheless,
this condition is easier to check, as it does not imply any admissible monomial order.

We denote EUGB(A) the Extended Universal Gr�obner basis of the ideal A :

EUGB(A) = {f ∈ A : dim(L(Y (f) ∩ A)) = 1}.

The EUGB(A) is always �nite [1]. Clearly, UGB(A) ⊂ EUGB(A) . Unlike the �nding of
UGB(A) , the �nding of EUGB(A) is done via geometrical and combinatorial operation on
ZZd

>0 .

4 Finding EUGB(A)

The described algorithm searches for Young diagrams whose spans have a one-dimensional
intersection with the ideal A , and this intersection is itself an ideal generated by some
polynomial from EUGB(A) .

The following global variables are used:

• *basis* � an arbitrary Gr�obner basis to start with; for example, a Gr�obner basis w.r.t.
degrevlex monomial order. It is needed for checking the linear independence of the
monomials of Young diagrams.

• *diagrams* � a list of found diagrams that ful�ll the condition (1). Each diagram is
de�ned by a list of nondivisor monomials (i.e. �corners� of the diagram. At the start, the
list of diagrams contain the Young diagrams of the polynomials of the *basis*. (Although
it could be empty, but then the procedure would have taken more time.)

• *bad-coideals* � a list of coideals that do not contain diagrams of interest of size less
than MAX-SIZE. At the start, this list is empty.

The following helper functions are mentioned but not listed:

• nondivisors (poly): accepts a polynomial and returns its monomials, that are not
divisors of any other monomials of this polynomial.

• contains-divisors-of (monomials, diagram) �nds among the monomials the divisors
of diagram's�corners�.

• remove-multiples-of (monomials, corner) removes from monomials the ones that
are multiples of corner.

• intersect-with-ideal (sequence, basis) checks the intersection of a span of the
sequence and the ideal, generated by basis. If the intersection is not zero, it is assumed
1-dimensional, and the resulting generating polynomial is returned.

• coideal-belongs (inner, outer) checks that the inner monomial coideal is a subset
of the outer.

1408

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

• closest-to-origin (list) returns the monomial from the list that is closest to the
origin.

As the �rst step, the algorithm outputs the polynomials of the given *basis*, which clearly
meet the condition (1), and saves the diagrams of these polynomials. After that, the monomial
coideals not containing the found *diagrams* are enumerated.

find-eugb (*basis*):

diagrams← {}
for all poly ∈ *basis* do

yield poly

diagrams← *diagrams* ∪ nondivisors(poly)
end for

repeat

oldsize = size(*diagrams*)
process-coideals(*diagrams*)

until size(*diagrams*) = oldsize

In order to prevent duplicating diagrams in the output, each diagram is being searched for in
a monomial coideal, which does not contain at least one �corner� of already found *diagrams*.
Such a coideal (there can be many of them, but not in�nitely many) is computed by the recursive
procedure process-coideals. Once it is found, the find-polynomial function is invoked for
this coideal.

process-coideals (diagrams, coideal = {}):
if diagrams = {} then

find-polynomial(coideal)

else

diagram ← any of the diagrams
if contains-divisors-of(coideal, diagram) then

process-coideals(diagrams\diagram , coideal)

else

for all corner ∈ diagram do

new-coideal← corner ∪ remove-multiples-of(coideal, corner)

process-coideals(diagrams\diagram , new-coideal)

end for

end if

end if

The next procedure accepts a coideal and grows a Young diagram inside it, starting from an
empty diagram, and adding monomials one-by-one, until the condition 1 is met. On each step,
from all monomials (�dimples�) available for addition, the one closest to the origin is selected.

As the coideal may be in�nite (especially in case we are dealing with a non-zero-dimension
polynomial ideal), the procedure is forced to stop once the size of the coideal reaches MAX-SIZE.

find-polynomial (coideal):

for all bad-coideal ∈ *bad-coideals* do

if coideal-belongs(coideal, bad-coideal) then

return

1409

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

end if

end for

seq← {}
dimples← {0}
while dimples 6= {} do

if |seq| > MAX-SIZE then

print Linear-dependent Young diagram not found in coideal.
bad-coideals = *bad-coideals* ∪ coideal
return

end if

new-monom← closest-to-origin(dimples)

seq← seq ∪ new-monom
poly← intersect-with-ideal(seq, *basis*)

if poly 6= 1 then

diagrams← *diagrams* ∪ support(poly)
yield poly

end if

dimples← update-dimples(new-monom, dimples\new-monom)
end while

The helper procedure update-dimples adds a new �dimple� to the list of available monomials
for the next step of diagram growing, and removes its divisors from the list.

update-dimples (dimples new-cell):

for all v ∈ X do

if 6 ∃c ∈ dimples : c ≺ v · new-cell then

dimples← dimples ∪ v · new-cell
end if

end for

return dimples

The above algorithm is able to �nd the polynomials of EUGB(A) , whose Young diagrams
are of size less than MAX-SIZE. The size limit can be discarded for zero-dimensional ideals, where
the endless growing of a diagram of linearly independent monomials is theoretically impossible.
On all other ideals, the size limit allows to avoid endless loops, but can lead to loss of some
EUGB polynomials with too big Young diagrams.

Unfortunately, there is no possibility to give any reasonable estimation for MAX-SIZE that
would guarantee the generation of entire EUGB. Obviously, the size of a Young diagram of a
polynomial can not be less than its degree; and the best known estimations on the degree of
Gr�obner basis elements are 22

k
for lex ordering [5] and k2+1 for grevlex ordering [6] (where

k is the maximum degree amongst the generators of the ideal).

5 Parallelizing the EUGB �nding algorithm

A lot of operations in the algorithm described above can be run in parallel. While process-

coideals in the original algorithms outline is called step-by-step, with each next step having
one more diagram, it is possible �rst to calculate a few coideals to search in, then search
for EUGB polynomials in each coideal independently, using a separate working thread. The
following statements should be considered when implementing the parallelized EUGB �nding:

1410

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

• It is possible that the parallel algorithm would �nd the same Young diagrams simultaneously
in di�erent computing threads. While this overhead is not likely to be completely
eliminated, some techniques would help (see below).

• Each coideal given to the working thread should not contain any of the *diagrams*

found so far. Also, the less monomials the �current� processed coideals have in common,
the better.

• To further decrease the possibility of �nding duplicate diagrams simultaneously, the
following principle should be used when selecting the next monomial for diagram increment
(in addition to closest-to-origin): once the monomial got into the diagram being built
by a working thread, it is better not to add this monomial to a diagram being build in a
neighbor working thread; this should be done only if no other options are left.

• Once all the working threads are done with their Young diagrams and return some
polynomials, the control �ow should go back to the main thread, where the results
are stored, the duplicates are eliminated, and the new portion of monomial coideals is
calculated for the next parallel computation step.

6 Acknowledgements

I wish to thank Nickolay Vasiliev for encouraging and supervising my work on this topic.
Ñïèñîê ëèòåðàòóðû

1. Vasiliev N.Monomial Orderings, Young Diagrams and Gr�oebner Bases // Proceedings of the
International Conference �Computer Algebra in Scienti�c Computing� (CASC). Technical
University of Munchen. Munchen, 2003.

2. Cox D.A., Little J.B., O'Shea D. Ideals, Varieties, and Algorithms // Introduction to
Computational Algebraic Geometry and Commutative Algebra. New York: Springer, 2007.

3. Robbiano L. Term ordering on the polynomial ring // Proceedings of EUROCAL '85 (Linz),
Lecture Notes in Computer Science. 1985. V. 204. P. 513-517.

4. Faug�ere J. C., Gianni P., Lazard D., Mora T. E�cient computation of zero-dimensional
Gr�obner bases by change of ordering // J. of Symbolic Computation. 1993. V. 16. Issue 4.
P. 329-344.

5. Mayr E., Meyer A. The complexity of the word problem for commutative semigroups and
polynomial ideals // Adv. Math. 1982. V. 46. P. 305-329.

6. Lazard D. Gr�obner Bases, Gaussian elimination and resolution of systems of algebraic
equations // Proceedings of the European Computer Algebra Conference on Computer
Algebra (EUROCAL). London: Springer-Verlag, 1983. P. 146-156.

Accepted for publication 7.06.2010.

1411

Âåñòíèê ÒÃÓ, ò. 15, âûï. 4, 2010

ÏÀÐÀËËÅËÜÍÎÅ ÂÛ×ÈÑËÅÍÈÅ ÐÀÑØÈÐÅÍÍÛÕ
ÓÍÈÂÅÐÑÀËÜÍÛÕ ÁÀÇÈÑÎÂ ÃÐ�ÁÍÅÐÀ

c© Äìèòðèé Àëåêñååâè÷ Ïàâëîâ
Ñàíêò-Ïåòåðáóðãñêèé ãîñóäàðñòâåííûé ïîëèòåõíè÷åñêèé óíèâåðñèòåò, Ïîëèòåõíè÷åñêàÿ,

29, Ñàíêò-Ïåòåðáóðã, 195251, Ðîññèÿ, àñïèðàíò êàôåäðû ïðèêëàäíîé ìàòåìàòèêè,
e-mail: dmitry.pavlov@gmail.com

Êëþ÷åâûå ñëîâà: óíèâåðñàëüíûé áàçèñ Ãð¼áíåðà; ïîëèíîìèàëüíûé èäåàë; äèàãðàì-
ìà Þíãà.
Â ñòàòüå ïðåäñòàâëåí àëãîðèòì âû÷èñëåíèÿ ðàñøèðåííîãî óíèâåðñàëüíîãî áàçè-
ñà Ãð¼áíåðà (EUGB), ðàáîòàþùèé íà øèðîêîì êëàññå ïîëèíîìèàëüíûõ èäåàëîâ.
EUGB(A) ïîëèíîìèàëüíîãî èäåàëà A îïðåäåë¼í êàê êîíå÷íîå [1] ìíîæåñòâî ïî-
ëèíîìîâ fi, ÷üè äèàãðàììû Þíãà Y (fi) óäîâëåòâîðÿþò ñëåäóþùåìó óñëîâèþ:
dim(L(Y (fi)) ∩ A) = 1 (ãäå L îáîçíà÷àåò ëèíåéíóþ îáîëî÷êó ìíîæåñòâà ïîëèíî-
ìîâ â ôàêòîðàëãåáðå èäåàëà). Èçâåñòíî, ÷òî EUGB ñîäåðæèò óíèâåðñàëüíûé áàçèñ
Ãð¼áíåðà èäåàëà. Àëãîðèòì îñíîâàí íà ãåîìåòðè÷åñêèõ ñâîéñòâàõ äèàãðàìì Þí-
ãà â ZZd

+, è ýëåìåíòû EUGB íàõîäÿòñÿ èì ïî áîëüøåé ÷àñòè íåçàâèñèìî äðóã îò
äðóãà, ÷òî ïîçâîëÿåò âû÷èñëÿòü èõ ïàðàëëåëüíî. Â ïîñëåäíåé ÷àñòè ñòàòüè äàíà
ñõåìà ïàðàëëåëèçàöèè àëãîðèòìà.

1412

