Bectauk TT'Y, 1.15, BbIm. 4, 2010

PARALLELIZED COMPUTATION OF
EXTENDED UNIVERSAL GROBNER BASIS

(© Dmitry Alekseevich Pavlov
Saint-Petersburg State Polytechnical University, Polytechnicheskaya 29, St.-Petersburg,
195251, Russia, Post-graduate Student of Applied Mathematics Department,
e-mail: dmitry.pavlov@gmail.com

Key words: universal Grobuner basis; polynomial ideal; Young diagram.

The article presents an algorithm to calculate Extended Universal Grébner Basis
(EUGB), working on wide range of polynomial ideals. The EUGB(2l) of a polynomial
ideal 2 is defined as a finite [1] set of polynomials {f;} whose Young diagrams Y'(f;)
meet the following condition: dim(L(Y (f;))NA) =1 (where £ denotes the span of a set
of polynomials in the quotient algebra of the ideal). It is known that the EUGB contains
the Universal Grébner Basis. The algorithm is based on geometry of Young diagrams
in Z‘i , and finds the polynomials of EUGB mostly independently, which makes it able
to run in parallel. An outline of the parallel version of the algorithm is given.

1 Notation and Background

Let K[x1,...,24] be a polynomial ring over a field K in d variables X = {z1,...,24}. The
space of monomials in these variables can be trivially identified with the lattice Zio. Here
and after, we make no difference between the monomials and integer vectors with nonnegative
coordinates—the elements of the lattice.

A polynomial ideal [2], generated by polynomials (fi,..., fs), is defined as the following
infinite set of polynomials from Klxy,..., z4]:

(fi,... fs) = {Zhifi:hl,...,hs EK[:L‘I,...,xd]}.
i=1

It is known that the ideal can have more than one possible set of generators, each of which
is called a basis of the ideal [2].
Let > be a total order on Zio . It is called admissible, when it meets the following condition:

e a0 foreach a #0;
o If > (3, then v+ > 3+~ for each ’yelio.

We denote as LT, (f) the leading term of the polynomial f, that is, the term whose
monomial is the biggest according to the admissible ordering > .

Let 2 be a polynomial ideal in K{zy,...,24) and > be an admissible monomial ordering.
A finite set of polynomials G € 2 is called a Grobner basis GB, (2() of 2, if the leading term
of any polynomial from 2(is a multiple of some leading term of a basis polynomial [2]:

1405

Bectauk TT'Y, 1. 15, BbIm. 4, 2010

{LT-(9:) - 9 € G}) = {{LT-(f) - f € A}).

The Grobner basis G of the ideal 2 has two important properties: first, it generates 2,
and second, every polynomial g € 2 has a normal form r, defined as a result of polynomial
reduction of ¢ w.r.t. G with the monomial order > :

g=hifi+--+hsfs+r, hi,r € Klzy,...,x4).

By the definition of polynomial reduction, no term of r is a multiple of any of LT, (f;) (*).

2 Coideals, quotient algebra, and FGLM algorithm

The nondivisibility condition (*) has a convenient geometrical interpretation: all monomials of
r are positioned “under” the monomial ideal, formed by {LT(f;), f; € GB.(2()}. That is, they
belong to the coideal Co(GB.()) = Zi0\<{LT(fZ-)}) .

All possible normal forms of polynomials of 2 w.r.t. GB, () belong to L(Co(GB.(4))),
where L denotes the span of a set of polynomials in the quotient algebra of the ideal. We
denote it Q. (), as it actually determines the quotient algebra of the ideal 2 (fig. 2):

Qe (A) ~ Klxy,...,zq]/A.

'y
ys o u\\ o kY o o
4 .
o " a at &, o
¥ty
yB(< o [~) @
2 B)
y [=] o [=] a
=y +y
u [} o 3 - >
Y-
1 = %2 %% # z* %" "

Fig. 1. The quotient algebra of an ideal generated by {y* + zy, z%y? +y, 23y — ¢®}, is in turn
generated by monomials, underlying the dashed area

1406

Bectauk TT'Y, 1.15, BbIm. 4, 2010

We call monomials {m;} (not necessarily finite set) linearly independent w.r.t. 2, if the
intersection of their span with 2l is also zero:

L({m:} n2A) = {0}.

The ideal 2 clearly do not contain any normal forms w.r.t. 2, except the zero polynomial:
Q. 2ANA={0}.

Hence, the monomials from the coideal Co(GB, (A)) form a linearly independent set. But as
soon as we add to this set the leading monomial of any polynomial of the Grébner basis, we
have this polynomial within the linear span of the set:

L(Q-(RA) ULT(f;)) N2 = (fi),

and the dimension of this span is obviously equal to 1:
dim(£(Q.- () ULT(f)) N2A) = 1.

This way of Grébner basis polynomials construction is used in FGLM [4] algorithm, which
computes a Grobner basis for an arbitrary monomial order >’ given another Grobner basis for
another monomial order > . Basically, the FGLM algorithms incrementally builds the coideal
(starting from zero monomial), following the monomial order >, until the monomials are not
linearly independent. After they become linearly dependent, the corresponding polynomial of
the Grobner basis it calculated, and then the algorithms steps back and goes on, never adding
that “linearly dependent” monomial again.

The FGLM algorithm has a limitation: it accepts only zero-dimensional polynomial ideals—
the ideals whose quotient algebra is generated with a finite number of monomials. In another
words, the coideal Co(GB,.(A)) in this case is finite, i.e. zero-dimensional.

3 Universal Grobner basis and Young diagrams

We denote as UGB(2() the universal Grébner basis of the ideal 2: the union of all possible
Grobner basiss with all admissible monomial orders. Robbiano [3] has shown that the UGB is
always finite.

We define a d-dimensional Young diagram as a subset of Zio lattice, with the only
requirement that if it contains some monomial m , it must also contain all divisors of m .

We call a Young diagram of a polynomial r € 2 the one formed by the terms (monomials)
of r, that is, a union of monomials of r and all their divisors (fig. 3).

LIZ'y4

z%y

1.4

Fig. 2. Young diagram of polynomial 5zy* + 2x3y> + 2y? — 25y + 8x*

1407

Bectauk TT'Y, 1. 15, BbIm. 4, 2010

For every polynomial f € UGB(2) the following condition is hold [1]:
dim(L(Y(f)nA)) = 1. (1)

This condition does not guarantee that the polynomial f is a part of UGB(2l); nevertheless,
this condition is easier to check, as it does not imply any admissible monomial order.
We denote EUGB(2() the Extended Universal Grébner basis of the ideal 2 :

EUGB(®) = {f € 2 : dim(L(Y (f) N 2A)) = 1}.

The EUGB() is always finite [1]. Clearly, UGB(2l) € EUGB(2). Unlike the finding of
UGB(2), the finding of EUGB(2l) is done via geometrical and combinatorial operation on
z:,.

4 Finding EUGB(2()

The described algorithm searches for Young diagrams whose spans have a one-dimensional
intersection with the ideal 2, and this intersection is itself an ideal generated by some
polynomial from EUGB(2).

The following global variables are used:

e *basis* — an arbitrary Grobner basis to start with; for example, a Grobner basis w.r.t.
degrevlex monomial order. It is needed for checking the linear independence of the
monomials of Young diagrams.

e xdiagrams* — a list of found diagrams that fulfill the condition (1). Each diagram is
defined by a list of nondivisor monomials (i.e. “corners” of the diagram. At the start, the
list of diagrams contain the Young diagrams of the polynomials of the *basis*. (Although
it could be empty, but then the procedure would have taken more time.)

e xbad-coideals* — a list of coideals that do not contain diagrams of interest of size less
than MAX-SIZE. At the start, this list is empty.

The following helper functions are mentioned but not listed:

e nondivisors (poly): accepts a polynomial and returns its monomials, that are not
divisors of any other monomials of this polynomial.

e contains-divisors-of (monomials, diagram) finds among the monomials the divisors

of diagram’s“corners”.

e remove-multiples-of (monomials, corner) removes from monomials the ones that
are multiples of corner.

e intersect-with-ideal (sequence, basis) checks the intersection of a span of the
sequence and the ideal, generated by basis. If the intersection is not zero, it is assumed
1-dimensional, and the resulting generating polynomial is returned.

e coideal-belongs (inner, outer) checks that the inner monomial coideal is a subset
of the outer.

1408

Bectauk TT'Y, 1.15, BbIm. 4, 2010

e closest-to-origin (list) returns the monomial from the list that is closest to the
origin.

As the first step, the algorithm outputs the polynomials of the given *basis*, which clearly
meet the condition (1), and saves the diagrams of these polynomials. After that, the monomial
coideals not containing the found *diagrams* are enumerated.

find-eugb (*basis*):
diagrams < {}
for all poly € *basis* do
yield poly
xdiagrams* < *diagrams* Unondivisors(poly)
end for
repeat
oldsize = size(*diagrams*)
process-coideals(*diagrams*)
until size(*diagrams*) = oldsize

In order to prevent duplicating diagrams in the output, each diagram is being searched for in
a monomial coideal, which does not contain at least one “corner” of already found *diagramsx.
Such a coideal (there can be many of them, but not infinitely many) is computed by the recursive
procedure process-coideals. Once it is found, the find-polynomial function is invoked for
this coideal.

process-coideals (diagrams, coideal = {}):
if diagrams = {} then
find-polynomial(coideal)
else
diagram < any of the diagrams
if contains-divisors-of(coideal, diagram) then
process-coideals(diagrams\diagram, coideal)
else
for all corner € diagram do
new-coideal < corner Uremove-multiples-of (coideal, corner)
process-coideals(diagrams\diagram, new-coideal)
end for
end if
end if

The next procedure accepts a coideal and grows a Young diagram inside it, starting from an
empty diagram, and adding monomials one-by-one, until the condition 1 is met. On each step,
from all monomials (“dimples”) available for addition, the one closest to the origin is selected.

As the coideal may be infinite (especially in case we are dealing with a non-zero-dimension
polynomial ideal), the procedure is forced to stop once the size of the coideal reaches MAX-SIZE.

find-polynomial (coideal):
for all bad-coideal € *bad-coideals* do
if coideal-belongs(coideal, bad-coideal) then
return

1409

Bectauk TT'Y, 1. 15, BbIm. 4, 2010

end if
end for
seq « {}
dimples < {0}
while dimples # {} do
if |seq| > MAX-SIZE then
print Linear-dependent Young diagram not found in coideal.
bad-coideals = *bad-coideals* U coideal
return
end if
new-monom <— closest-to-origin(dimples)
seq < seq U new-monom
poly < intersect-with-ideal(seq, *basis*)
if poly # 1 then
diagrams ¢<— *diagrams* U support(poly)
yield poly
end if
dimples < update-dimples(new-monom, dimples\new-monom)
end while
The helper procedure update-dimples adds a new “dimple” to the list of available monomials
for the next step of diagram growing, and removes its divisors from the list.

update-dimples (dimples new-cell):
for all v € X do
if Ac € dimples:c < v -new-cell then
dimples < dimples U v - new-cell
end if
end for
return dimples

The above algorithm is able to find the polynomials of EUGB(2(), whose Young diagrams
are of size less than MAX-SIZE. The size limit can be discarded for zero-dimensional ideals, where
the endless growing of a diagram of linearly independent monomials is theoretically impossible.
On all other ideals, the size limit allows to avoid endless loops, but can lead to loss of some
EUGB polynomials with too big Young diagrams.

Unfortunately, there is no possibility to give any reasonable estimation for MAX-SIZE that
would guarantee the generation of entire EUGB. Obviously, the size of a Young diagram of a
polynomial can not be less than its degree; and the best known estimations on the degree of
Grobner basis elements are 22" for lex ordering [5] and k2 +1 for grevlex ordering [6] (where
k is the maximum degree amongst the generators of the ideal).

5 Parallelizing the EUGB finding algorithm

A lot of operations in the algorithm described above can be run in parallel. While process-
coideals in the original algorithms outline is called step-by-step, with each next step having
one more diagram, it is possible first to calculate a few coideals to search in, then search
for EUGB polynomials in each coideal independently, using a separate working thread. The
following statements should be considered when implementing the parallelized EUGB finding:

1410

Bectauk TT'Y, 1.15, BbIm. 4, 2010

6

e It is possible that the parallel algorithm would find the same Young diagrams simultaneously
in different computing threads. While this overhead is not likely to be completely
eliminated, some techniques would help (see below).

e Fach coideal given to the working thread should not contain any of the *diagrams*
found so far. Also, the less monomials the “current” processed coideals have in common,
the better.

e To further decrease the possibility of finding duplicate diagrams simultaneously, the
following principle should be used when selecting the next monomial for diagram increment
(in addition to closest-to-origin): once the monomial got into the diagram being built
by a working thread, it is better not to add this monomial to a diagram being build in a
neighbor working thread; this should be done only if no other options are left.

e Once all the working threads are done with their Young diagrams and return some
polynomials, the control flow should go back to the main thread, where the results
are stored, the duplicates are eliminated, and the new portion of monomial coideals is
calculated for the next parallel computation step.

Acknowledgements

I wish to thank Nickolay Vasiliev for encouraging and supervising my work on this topic.

MUCOK JINTEPATYPbI

1. Vasiliev N. Monomial Orderings, Young Diagrams and Gréebner Bases // Proceedings of the

International Conference “Computer Algebra in Scientific Computing” (CASC). Technical
University of Munchen. Munchen, 2003.

Cox D.A., Little J.B., O’Shea D. Ideals, Varieties, and Algorithms // Introduction to
Computational Algebraic Geometry and Commutative Algebra. New York: Springer, 2007.

Robbiano L. Term ordering on the polynomial ring // Proceedings of EUROCAL ’85 (Linz),
Lecture Notes in Computer Science. 1985. V. 204. P. 513-517.

Faugere J. C., Gianni P., Lazard D., Mora T. Efficient computation of zero-dimensional
Grobner bases by change of ordering // J. of Symbolic Computation. 1993. V. 16. Issue 4.
P. 329-344.

Mayr E., Meyer A. The complexity of the word problem for commutative semigroups and
polynomial ideals // Adv. Math. 1982. V. 46. P. 305-329.

Lazard D. Grobner Bases, Gaussian elimination and resolution of systems of algebraic

equations // Proceedings of the European Computer Algebra Conference on Computer
Algebra (EUROCAL). London: Springer-Verlag, 1983. P. 146-156.

Accepted for publication 7.06.2010.

1411

Bectauk TT'Y, 1. 15, BbIm. 4, 2010

ITAPAJIJIEJIBHOE BBIYVICJIEHVE PACITIMPEHHBIX
YHUBEPCAJIbHBIX BA3NICOB I'PEBHEPA

© HAdmurpuii Anexkceepuu IlaBsioB
Cankr-ITerepOyprekuii ToCyIapCTBEHHBIN TOINTEXHUYECKWT yHUBepcuTeT, [losmmrexandeckas,
29, Cankr-llerepbypr, 195251, Poccus, acnupanT Kadeapbl TPUKJIAIHON MaTeMaTUKH,
e-mail: dmitry.pavlov@gmail.com

Karueswvie caosa: yamsepcaabubiii 6a3uc ['pébruepa; moanHOMUATLHBIN HACAT; TUATPAM-
ma Onra.

B crarbe npepcraBiieH aJTOPUTM BBIYHMCJIEHUsT PACIIMPEHHOTNO YHUBEPCAIBHOTO Oasu-
ca I'péonepa (EUGB), paborarorumit Ha MHUPOKOM KJIacCe MOJUHOMHUAIBHBIX HICATIOB.
EUGB(2l) noaunomuansHoro uieana A oupejiesén kak KoHednoe [1] muoxecrso no-
JMHOMOB f;, ubm jmarpammbl FOura Y (f;) yuoBIeTBOPAIOT CieytoemMy yCaoBHIO:
dim(L(Y(fi))N2A) =1 (rme £ obosHadaeT JUHEHHYIO 000J0UKY MHOKECTBA TTOJHHO-
MOB B hakTopaaredpe naeana). zsecrno, aro EUGB comep:kut yauBEpCaILHBIN Gasnc
I'pébuepa nmeasa. AITOPUTM OCHOBAH Ha TeOMETPHIECKUX CBOHcTBax amarpamm FOH-
ra B Zi, u seventsl EUGB Haxomarcs wM 1o GOJBINEH 9acTi HE3ABUCUMO JPYT OT
IpyTa, 9TO TO3BOJSIET BLIYHCISITDL WX TMapalieabHo. B mociaenneit qactn craTthu gaHa
cxXeMa TaAPAJIIeTH3AIUN AJTOPUTMA.

1412

