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ON NONCOMPACT SYMMETRIC SPACES
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1 Introduction

The modern technique of harmonic analysis on symmetric spaces makes possible to extend a lot of
problems of classical harmonic analysis to symmetric spaces. In particular we can study the problems of
function approximation on symmetric spaces.

Let X be a Riemannian symmetric space. Let L,(X), 1 < p < oo, be the set of all measurable
functions f defined on X, for which the norm

i1 = ([ 15 dx)”p

is finite, dz being the Riemannian measure on X. Let us denote by L. (X) the set of all continuous
bounded functions on X, endowed with the norm

Iflloo == sup |f(z)]-
zeX

In classical case X is the circle S or R, the apparatus of approximation being the set of trigonometric
polynomials or the set of entire functions of exponential type respectively (see [1], [2]). Let P, = P,(X)
be the set of all trigonometric polynomials of degree < v for X = S* or the set of all entire functions of
exponential type < v for X = R. The best approximation of a function f(z) € L,(X) in L,-metric is
obtained by

Eu(f)p = o |If = @]l

One of the main problems of approximation theory is to determine relations between the degree of decrease
E,(f)p as v — oo and the intrinsic properties of f (its smoothness, its modulus of continuity, etc.) By
means of direct Jackson—type theorems upper bounds of E,(f) by the continuity modulus of f have been
found. Another result of the approximation theory is the description of certain function classes in terms
of the best approximations and converse approximation theorems of which important elements are the
Bernstein—type inequalities.

The problems of approximation on a compact symmetric space X of rank 1 by the spherical harmonic
polynomials have been active studied in the recent years, especially the case when X is the n-dimensional
sphere S™. For compact symmetric space of rank 1 X the spherical harmonic polynomials are defined
as linear combinations of eigenfunctions of the Laplace — Beltrami operator D, in the case X = S™ the
spherical harmonic polynomials are the classical spherical polynomials. It is not my aim here to discuss
these investigations, so I refer to the papers of Nikolskii and Lizorkin [3], Ragozin [4], Rustamov [5],
Platonov [6,7,8], Luoging [9], Kamzolov [10], Ivanov [11]. The reader can find there a bibliography of
recent researches on this subject.

We consider the case when X is a Riemannian noncompact symmetric space of rank 1. For this
case there are only a few results. A general approach to the approximation on an arbitrary Riemannian
manifold X was developed by Lizorkin in [12], but the entire vectors of finite degree, which were used by
him as apparatus of approximation, are not functions on X. Another possible apparatus of approximation
on Riemannian manifold is the set of functions from Lo(X) with bounded spectrum. The problems of the
approximation theory on the n—dimensional Lobachevsky space by the functions with bounded spectrum
was considered by Lizorkin and Petrova in [13], [14].
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Further we shall consider certain problems of approximation theory in Ly—metric on arbitrary Rieman-
nian symmetric space of rank 1 by the functions with bounded spectrum (see [15]). The main subjects
are: direct Jackson—type theorems, the description of Nikolskii — Besov spaces in terms of the best
approximations, Bernstein-type inequalities. The special case of noncompact symmetric spaces of rank
1 is the n—dimensional Lobachevsky space and a lot of of these results are generalization of the results
from [13], [14].

2 Functions with bounded spectrum and
Bernstein—type inequalities

Any Riemannian symmetric space X can be realized as the quotient space G/K, where G is a real
semisimple connected Lie group with finite center, K is a maximal compact subgroup of G. Let G = NAK
be the Ivasava decomposition of G, M be the centralizer of A in K, B = K/M. By dz we denote the
element of G—invariant measure on X, by db and dk the elements of K-invariant normalized measures on
B and K respectively. Let g, € a and n be the Lie algebras of the Lie groups G, K, A and N respectively,
a* meaning the real dual space of a. Let ¥ be the set of all restricted roots (X C a*), £t be the set of
all positive restricted roots,
s e
= 3 :

aclt

By <, > we denote the Killing form on g. This form is positive defined on a. For each A € a* let Hy € a
be determined by A(H) =< Hy, H > for H € a. For A,y € a* we define

<N Woi=< By Hy >0
a* and a can be identified by the correspondence A — Hy. Let
a. ={l€a”: <a,A>0 VaeXt}

be the positive Weyl chamber.
For g € G by A(g) € a we denote the unique element such that

g=n-expA(g) -y,
where u€e K, n€ N. Forz =gK € X =G/K and b= kM € B = K/M we define
Az, b) = A(k™1g).

By C.(X) we denote the set of all continuous complex-valued functions on X with compact support.
The Fourier transform of an arbitrary function f € C.(X) is the function on a* x B defined by the
formula

FOb) = '/f(:r)e(_“'"p)“‘(z'b)da:, Aea*, beB
X
( see [16], [17]). Then the Plancherel formula

[u@ras= [ Fa0F 02 drd (1
X

a_“_xB

holds, where ¢() is the Harish-Chandra’s e-function, dA is the Lebesque measure on a* properly nor-
malized.

The Fourier transform f(z) — f(A, b) uniquely extends from C.(X) to an isomorphism of the Hilbert
space Ly(X) to the Hilbert space Ly(a} x B, |¢(A)|% dA db) with the Plancherel formula still remaining
in force.

A function f € Ly(X) is called function with bounded spectrum of type v > 0 if f(A,b) = (O for
|A| > v, where [A] =< A, A >!/2). We denote by J, the set of all this functions. It can be proved that
I/ CRX).

;From here on let X be a noncompact Riemannian symmetric space of rank 1. In this case dima™ = 1.
We choose the basis vector Hy € a* such that Hy € af and |Ho| = 1. We will identify a* with R by
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means of the correspondence ¢ «— {Hy, t € R. By this identification the set a} correspond to the set of
positive real numbers. By d(z,y) we denote the distance from z to y, where z,y € X. Let

o(z;t) ={y € X : d(y,z) =t}

be the sphere in X of radius ¢ and center z. By dpz(y) we understand the surface element of o(z;t) and
let [o(t)| be volume of o(z;1).
For f € C.(X) we introduce the function S, f

1
S'f:r-—-—/f du.(y), t>0.
( t )( ) Ia_(t)l (y) H (y)
a(z;t)
The operator S; is called averaging operator. By continuity S; can be extended to Ly(X) and moreover
ISefll2 < [Ifll2 V&> 0, Vfe LyX),

where || - [|2 is the norm in Ly(X).
We define the finite differences Aff, £=0,1,2,..., of a function f € Ly(X) with a step ¢t > 0 by the

rul
s AY(2) = f(z), AMf(z) = Acf(z) = f(z) - Sef(z),
At f(z) = A(AF 2 f(2).

We can also write
Aff(z) = (I - S)* f(2)
where [ is the identity operator. Let D be the Laplace — Beltrami operator on X.

Lemmal Let®€ J,, v>1,t0,k=1,2,.... Then there exist positive constants c1,cy (c1 = c1(X, k),
c2 = c2(X, k)) such that
ID* ]Iz < cav @] @)

A @llz < es(ut)**(|®|2, (3)

The proof see in [15]. The inequalities (2), (3) and their analogs are called the Bernstein type inequalities.
They play an important role for the converse approximayion theorems.

3 Direct Jackson—type theorems

For f € La(X) let
wr(f,8)2 := sup ||Aff||2, 6>0.
0<t<s

wi(f,8)z is called the spherical continuity modulus of order k. By
E, P—; i — @]5.
(f)2:= Jnf [If — @2

we define the best approximation of a function f € Ly(X) by functions with bounded spectrum of type
v in Lz.
The following theorems are called direct Jackson-type theorems.

Theorem 1 There exists positive constant cq = ca(X, k), k=1,2,..., such that for f € La(X), v>1
Ey(f) < cawi(f,1/v)s, (4)

Let s€e N=1,2,..., D be the Laplace — Beltrami operator on X. In general [ € Ly(X) the element
Df is a distribution on X .

Theorem 2 Let f,Df,...,D*f € Lo(X). Then there ezists positive constant cs = e5(X, k,s) such that

forv>1
wi(D*f,1/v),
p2s ;

Ey(f) <cs
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The main elements of the proof of Theorem 1 are the following Lemmas 2 and 3. Using the Harish—
Chandra’s formula for spherical functions (see [17]) for A € a* we denote by ¢, (z) the spherical function

o= fe(i’\+'°)A(k9) dk, =gk € X' = G/iC
K

The spherical function gy (z) depends only on the distance between the points z end 0 = eK € X = G/K,
e being the unit element of G, and we can write

ea(z) = @a(t), t=d(z,o0).

Lemma 2 For every f € Ly(X) o r i
Sef(A,b) = @a(t) - f(A,b)

where f — f is the Fourier transform on X.

Lemma 3 For all A € a*, t > 0 the following inequalities hold:
1) el <L

2) 1-g(t)<B(KAA>+<pp>);

3) 1—@a(t)>cif At > 1 where c=c(X) > 0 is a constant.

Proof of Theorem 1.
It follows from the Plancherel formula that

o0

E2(f)2 = / f FOLB)I? du(A) db, (5)
v B

where du(2) = |¢(A)|~2 dX. From Lemma 2 it follows that

1—-ga(1/v) > ¢c

for A > v. Then from (3), Lemma 3 and the Plancherel formula we obtain
EX(f)2 < [ [(1=ga(1/w))** [FO D)l du(¥) db <
v B
< e [ J(1=@a(1/2)) " 1FO,b)| dp(2) db =

0B
= (1= S @) < e WR(f,1/0):,

Hence
E,(f) < cawr(f,1/v)2
with ¢4 = ¢ k. ‘
The proof of Lemmas 2 — 3 and Theorem 2 see in [15].

4 Nikolskii — Besov spaces

Let » > 0, k and s be any nonnegative integers such that 2k > r — 2s > 0. By definition a function
f(z) € Hy = H5(X) if f,Df,...,D*f € La(X) and

wi(D*f,8)2 < Ap 6™ V6> 0
for a positive constant A;. For f € H by h}(f) we denote the seminorm

r o wk(Dsflé)E
ekl BT

H}Y is a Banach space with respect to the norm

1]y = lIFllz + A3 (F)- (6)

The next theorem gives the description of the soaces Hj in terms of the best approximations.
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Theorem 3 If f € Hj then forv > 1

B < e

T

Conversely, if f € Lo(X) and for v > 1 there exists a constant A = A(f) such that

E(fn < 2,

then f € H} and
£l < ex(|lfll2 + A)-

Here cg, c7 are constants, independent of f but which can depend on X, k,r,s.
Corollary 1 The space H does not depend on the k,s € Zy = {0,1,2,...} such that 2k > r — 2s > 0.

These results can be transferred to Nikolskii — Besov spaces B}, = Bj (X), r >0, 1 < ¢ < co. Let
k,s € Zy be any such that 2k > r — 25 > 0. By definition a function f € B}, if f,Df,..., D°f € Ly(X)
and the seminorm b3, (f) is finite, where

o o B 1/q
L]
fMdé with 1 < ¢ <o,
o §(r—s)g+1 -
2q(f) = 0
Dif,é
u U%(T{’l with ¢ = co.
s>0 6
Bj, is a Banach space with respect to the norm
1£1lB5, = lIfll2 + b34(f)- (7)

Note that B, = Hj.

Theorem 4 Let a > 1 be arbitrary real number ( for ezample we can take a = 2). A function f € La(X)
belongs to the space By, if and only if b3 (f) < oo, where

) E a”"? Ei.(f)2 with ¢ < co
B, =1 =
sup a"" Egn(f)2 with g = co.
n=0,1,2,...

Moreover the norms (7) and iy
|1 £1l2 + b34(F)
are equivalent.
The proofs of Theorems 3 and 4 follow the scheme of corresponding theorems in [2] where the case
X = IR" is considered. The main elements of proof are Theorem 2 and Bernstein type inequalities (2) —
(3). See [15] for details.
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