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In [4], the so-called canonical representations on the Lobachevsky plane were introduced — for the case
when they are unitary. They are used for the construction of quantization etc. We consider them in a
more general aspect and study their action on distributions concentrated at the boundary. It turns out
that this action is diagonalizable. We give explicit expressions for distributions in irreducible constituents.
The diagonalizability in question was discovered in [1] for para-Hermitian symmetric spaces.

1 Canonical representations on the Lobachevsky plane

Let us realize the Lobachevsky plane as the unit disk D : zZ < 1 on z-plane. The group G = SU(1,1)
acts on D by fractional linear transformations

o _az+5 _(a b
ZHZ—Z‘Q—m,g— i =

(the group of motions of the Lobachevsky plane). Let I' be the unit circle zz = 1 and D=DUT.
For A € C, let Ry be the representation of G acting on D(D) by the formula:

(Ra(9)f)(2) = f(z - g)|bz +a|~2~*

It preserves the following sesqui-linear (Hermitian for A € R) form

s ol = o) /D ; F@)Fa(w)|L — 20/ dedydudy (1.1)

X

where z = z + iy, w = u + v, and
-A-1

e(A) =

Integral (1.1) converges absolutely for ReA > —1 and can be extended on the A-plane by analyticity
to a meromorphic function.

For A > —2 the representation R, can be regarded as the tensor product of the analytic series
representation T3¢ of the universal covering group G of G and its conjugate representation T where
o= (—)\ — 2)/2

Let (1, ) be the inner product in L?(D) with respect to the Euclidean measure:

() = [ w(p()dzdy
It is invariant with respect to the pair Ry, R_5_o:

(R(9)¥,9) = (¥, R_5_2(97")#) (1.2)
Extend R, to distributions on D by formula (1.2) where (1, ¢) is understood as the value of ¥ € D'(D)

at p € D(D).
Denote by Y the multiplication by
pP= 1 — 2z (13)

This operator intertwines R) and Ry_1, so that Y intertwines Ry and Ry_q:

P*Ra(9)f = Ra-al9)(p* f)



Bectauk TI'Y, 1.3, BBin. 1, 1998

2 Poisson transform
Elementary representations Ty, o € C, (see, for example, [5]) of G /Zs act on D(I') by the formula:
(To(9)@)(u) = p(u- g)lbu+al*’, u €T

The inner product from L*(T'):

27
o= [ vwp(u)da, u= e

is invariant with respect to the pair (7,,7-5-1). The operator B, on D(T), defined by the formula

2w
By = [ 11— ual > 2(0)d8, v =
0
intertwines T, and T_,_;. The basis ¥, (u) = €™ m € Z, consists of eigenfunctions of By:

B;Ym = bm(a)d’m

where
I'(-20-1)
I'(—o + m)['(—o —m)’
For o not integer T, and T_,_1 are equivalent (for o integer there is a ” partial equivalence”).
For o € C, define the Poisson transform P, by the formula

b (o) = 2m(—1)™

2m
(Pat)(2) =/ 11— za|* p(u)der, u = €'
0
It carries D(I') to C°°(D) and intertwines T_,_; and the restriction R_,_2 to C*( D):
R_,,_g(g)'Pa = PaT—a_l(g)

It has the following asymptotics at the infinity, i.e. when p — 0 (for p, see (1.3)):

(o] =]
(Po@)(z) ~ D (Conp)(w) - p* + 0>+ Y (Dopp)(u) - P (2.1)
k=0 k=0
where z = ru,r = |z|,u = €'*, and Co, Dok are some operators on D(I'). There are connections
between them:
Ccr,chr = j(a)D—o-l,k (22)
ba,kBo = j(a)c—a—-l,k (23)

where
j(o) = bo(o) = 27T (20 — 1)/T%(—0)

The basis functions t,, are transformed by P, to functions

- moe. DO+ omfl%r?
(’Pad)m)(Z) - q')m(u)(—l) Qﬂm[) Pa (1 - 1“2) (24)

where P™ is the Legendre function, see (2], Ch 3. Applying [2] 3.2 (18), we express (2.4) in terms of the
Gauss hypergeometric function:

(Potom)(2) = Ym(u)(l — p)"™/2[bm(—0 — 1)F(~0,—0 — m; =20, p)

+p*? M j(e)F (0 + 1,0 + 1 — m; 20 + 2;p)] (2.5)

Comparing (2.5) with (2.1), we observe (because (d?/da?)m = —m?y,,) that Dy are differential
operators on I' (and, by (2.2), (2.3), Co,x are integral operators). Namely, consider the following power
series in p:

(1—p)™2%F(c+1,0+1—m;20+2;p) (2.6)
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Its coefficients are polynomials in m with coefficients rational in ¢. In virtue of [2] 2.1(23), the function
(2.6) is invariant with respect to m + —m so that it depends on m? only. Therefore, we have

(1=p)™™F(o+ 1,0+ 1-m;20+2p) =Y Wi(o,—m?)p* (2.7)

where Wj (o, t) are polynomials in ¢ with coefficients rational in o. Therefore, operators D, ;. are:

Do = j(o)Wi (o, %) (2.8)

Write a recurrence relation for Wy and several polynomials Wj.:

(k+1)(20 + k + 2)Wi41(0,t) = [(o + 2k + 1)? = 2k(k + 1)]Wi(0,t) + [(0 + k)? + t/4]Wi_1(o,1) = 0

Wo(e,t) =1
Wi(o,0) = 5o +1)
1 (e +1)(o+2)?

t+

Wa(o.1) = 5o 73) 4(20 +3)
i (o + 1)(o + 2)(o + 3)*

Wg(ﬂ',f) = —

16(20 + 3) 24(20 + 3)
Wa(o,1) = 1 s 0+ 1002+33cr+35t (0 +1)(o+2)(c +3)*(c + 4)*
BN 19820+ 3)(%0 +5) 32(20 + 3)(20 + 5) 96(20 + 3)(20 + 5) '

3 The diagonalization of representations on distributions con-
centrated at the boundary

Let us denote by A,,,m € N = {0,1,2,...} the space of distributions on D having the form
(u)6™ (p)
where ¢ € D(I'), (™) the m-th derivative of the Dirac delta function; for p, see (1.3). The space
Yn=A0+A1+...+An

is invariant under R, (but each of Ay, As, ... not)

Theorem 3.1 Let A ¢ 1/2 + Z. Then for any m € N there erists a unique subspace V,, C Iy,
invariant and irreducible with respect to Ry such that its projection to A,, is the whole A,,. The space
¥ decomposes into the direct sum of irreducible invariant subspaces:

Sm=Vot+Vi+...+ Vi (3.1)

The restriction of Ry to Vi, 1s equivalent to T_y_i4m(~ Ta—m). The decomposition (3.1) is orthogonal
with respect to (, )a. A distribution € in V,, is characterized by its highest term ¢ - 6("')(;3), namely,

€= Z( Y Wi - m,d e 6m0(p) (3:2)

where W; are polynomials defined by (2.7).
Proof. First let m — 1/2< A < m+ 1/2, m € N. Take an arbitrary function ¢ € D(T') and denote

d= pA—m‘P
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The map ¢ + p™® intertwines 7_x_14m and R_)_ and its image is irreducible subspace - where R_j_
acts as T_x—14m(~ Ta—m). The function p™® has the following asymptotic when p — 0 (see (2.1)),

(P ®)(2) ECA ma% P+ m+lzDJ\—m399 P’ (3.3)

s=0 s=0

Apply to p™® the operator (A — p)Y~24=2 where p is a complex parameter. This operator is the
multiplication by (A — p)p~2#=2. The function (X — p)p~2#=2+™® is regarded as a distribution on D.
Let o — A. Then (see [3])

—2p—n-— 1 ng(n
(A = mp 727t o (1) )(p)

Therefore, by (3.3) our distribution tends to

G %E((ml)_ T Dr-ms - 67(0) (3.4)

The map ¢ — ( intertwines T_y_;+m and Ry, its image is exactly the desired subspace V;,. By analyticity
we can free ourselves from the conditions m —1/2 < A < m+1/2,m € N, so that A ¢ 1/2 + Z remains
only.

Substituting (2.8) in (3.4), we obtain (3.2). O

Write down distributions from V,,, for m = 0,1, 2,3, 4:

b,

()06‘ — %‘P‘S)

1
A i S oy doy — o8
wd (A= 1)pd’ + a2 1)[2 (A =1)p — "6,

3

mp('\ —1)*(A - 2)p - ¢"]6'+

(Péﬂi =t g-()‘ e 2)!;?6” +

il

+m[—2)‘2(’\ = 1)()\ - 2)(‘0 + 3A(P"]5,
L 5(273_—5)[2(A — 2P (X — 3)p — ©"16"+
+m1_—5)[—2(/\ — 1)2(A —-2)(A — 3)90 +3(A - 1)4,0"]5!-}-

I

-t @D =)@ =5 [AA2(A — 1)2(A — 2)(A —= 3)p — 12(A% — 202 + X — 1)p" + 3]s
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