A class of supercomplete systems of holomorphic functions

N. A. Malaschonok

Tambov State University, 392622 Tambov, Russia e-mail: malaschonok@main.tsu.tambov.ru

Let $G \subset \mathbb{C}^p$ be a full p-circular domain, \bar{G} – its closure, $\mathcal{A}(\bar{G})$ – the space of functions holomorphic in G.

Denote $\delta_n(G) = \sup_{z \in G} |z^n|$ (we use the multi-index notation). Fix a sequence α_n of complex numbers such that

$$\lim_{|n| \to \infty} (\delta_n(G)|\alpha_n|^{-1})^{1/|n|} = 1$$

Then the function

$$h(z) = \sum_{n} \alpha_n^{-1} z^n$$

is holomorphic on G.

Let us take p sequences $\beta_k^{(1)}, \ldots, \beta_k^{(p)}$ of distinct complex numbers in unit disc $(|\beta_k^i| < 1)$ with $|\beta_k^i| \to 1$ when $k \to \infty$. They give rise to the system of functions h_m :

$$h_m(z) = h(\beta_{m_1}^{(1)} z_1, \dots, \beta_{m_1}^{(p)} z_p).$$

We call the system h_m closed in $\mathcal{A}(\bar{G})$, if for any function f in $\mathcal{A}(\bar{G})$ there exist numbers A_m such that

$$f(z) = \sum_{m} A_m h_m(z) \tag{1}$$

where the series converges absolutely and uniformly inside G (the convergence in $\mathcal{A}(\bar{G})$).

Remark. We have to put some conditions on $\beta_k^{(i)}$ in order h_m be closed. Let us call a system h_m supercomplete, if there exists a nontrivial representation of zero with respect to this system.

Theorem A system h_m is supercomplete if and only if it is closed.

Proof. Firstly, let h_m be closed. Let us take an arbitrary function f in $\mathcal{A}(\bar{G})$

$$f(z) = \sum_{n} a_n z^n. \tag{2}$$

There exist A_m such that (1) holds. Define the operator D on $\mathcal{A}(\bar{G})$:

$$(Df)(z) = \sum_{n=0}^{\infty} a_{n+1} \frac{\alpha_n}{\alpha_{n+1}} z^n.$$

It is linear and continuous in $\mathcal{A}(\bar{G})$. Let us take p complex numbers γ_i , $|\gamma_i| < 1$, $\gamma_i \neq \beta_k^{(i)}$, $i = 1, \ldots, p$; $k = 1, \ldots, p$ $1, 2, \ldots$ The function $h_{\gamma}(z) = h(\gamma z)$ is an eigenfunction of D:

$$(Dh_{\gamma})(z) = \left(\prod_{i=1}^p \gamma_i\right) h_{\gamma}(z).$$

Being in $\mathcal{A}(\bar{G})$, it is represented according to (1):

$$h_{\gamma}(z) = \sum_{m} A_{\gamma m} h_{m}(z). \tag{3}$$

Applying D to (3), we obtain:

$$\left(\prod_{i=1}^{p} \gamma_i\right) h_{\gamma}(z) = \sum_{m} A_{\gamma m} \prod_{i=1}^{p} \beta_m^{(i)} h_m(z). \tag{4}$$

Multiplying (3) by $\prod_{i=1}^p \gamma_i$, and subtracting from (4), we obtain a nontrivial representation of zero in $A(\bar{G})$:

$$0 = \sum_{m} A_{\gamma m} (\prod_{i=1}^{p} \beta_{m}^{(i)} - \prod_{i=1}^{p} \gamma_{i}) h_{m}(z).$$

The second part of the proof includes three lemmae. For f of form (2) define

$$\tilde{f}(z) = \sum_{n} a_n \alpha_n z^n$$

. Let I denote the unit polydisk $|z_1| \leq 1, \ldots, |z_p| \leq 1$.

Lemma 1. ([2]) $f \in \mathcal{A}(\bar{G})$ if and only if $f \in \mathcal{A}(\bar{I})$.

Lemma 2. The function f admits the representation (1) in $\mathcal{A}(\bar{G})$ if and only if

$$\tilde{f}(z) = \sum_{m} A_{m} \prod_{i=1}^{p} (1 - \beta_{m_{i}}^{(i)} z)^{-1}$$

in $\mathcal{A}(\bar{I})$.

Let h_m be supercomplete, i.e. there exist B_m ($B_m \neq 0$ for the infinite set of m) such that $0 = \sum_m B_m h_m(z)$ in $\mathcal{A}(\bar{G})$. By Lemma 2 we have

$$0 = \sum_{m} B_{m} \prod_{i=1}^{p} (1 - \beta_{m_{i}}^{i} z_{i})^{-1}$$

in $\mathcal{A}(\bar{I})$. Fix i and sum B_m over all indexes m_j with $j \neq i$. We obtain the number $d(i, m_i)$. Let λ be a number such that $|\lambda| < 1, \lambda \neq \beta_k^i$. Consider the functions

$$g_i(\lambda, \xi) = \sum_{k=1}^{\infty} d(i, k) / (\beta_k^{(i)} - \lambda) (1 - \beta_k^{(i)} \xi), \ i = 1, \dots, p.$$

Lemma 3.(cf [1]). For any $z \in G$ we have:

$$1/(1-\lambda z) = (1/g_i(\lambda,0)) \sum_{k=1}^{\infty} d(i,k)/(\beta_k^{(i)} - \lambda)(1-\beta_k^{(i)}\xi).$$

 $(g_i(\lambda, 0) \neq 0 \text{ holds}).$

Let us take $f \in \mathcal{A}(\bar{G})$ and the associated $\tilde{f} \in \mathcal{A}(\bar{I})$. In \mathbb{C} , consider the torus T(R) "of radius" R > 1: $|t_i| = R, i = 1, ..., p$. Take R such that f is holomorphic in RG and $|g_i(1/t_i, 0)| \ge d > 0$ for $|t_i| = R$. Then by the Cauchy formula we have

$$\tilde{f}(z) = \frac{1}{(2\pi i)^p} \int_{T(R)} \tilde{f}(t) \prod_{i=1}^p \frac{dt_i}{t_i - z_i}$$

Applying Lemma 3 we obtain:

$$\begin{split} \tilde{f}(z) &= \frac{1}{(2\pi i)^p} \int_{T(\vec{R})} \tilde{f}(t) \prod_{i=1}^p \frac{dt_i}{t_i (1 - z_i/t_i)} \\ &= \frac{1}{(2\pi i)^p} \int_{T(R)} \tilde{f}(t) \prod_{i=1}^p \frac{dt_i}{t_i g_i (1/t_i, 0)} \prod_{1}^p \sum_{m} \frac{d_i(i, m_i)}{(\beta_{m_i}^{(i)} - 1/t_i) (1 - \beta_{m_i}^{(i)} z_i)} \\ &\qquad \qquad \sum_{m} \frac{A_m}{\prod_{i=1}^p (1 - \beta_{m_i}^{(i)} z_i)}, \end{split}$$

where

$$A_m = \prod_{i=1}^{p} d_i(i, m_i) \frac{1}{(2\pi i)^p} \int_{T(R)} \tilde{f}(t) \prod_{i=1}^{p} \frac{dt_i}{t_i g_i(1/t_i, 0)(1 - \beta_{m_i}^{(i)} t_i)}.$$

So by Lemma 2, we have in $\mathcal{A}(\bar{G})$:

$$f(z) = \sum_{m} A_m h_m(z)$$

with A_m defined by (4) \square

In conclusion let us give examples of supercomplete systems, where the sequence α_n , and therefore the function h(z), appears in a reasonable way.

Let $G^{(2)}$ be the "square" of G, i.e. $G^{(2)}$ consists of (z_1^2, \ldots, z_p^2) for $z \in G$. Take the Szegö kernel $\Psi(z, \bar{\xi}) = \sum \sigma_n z^n \bar{\xi}^n$ of $G^{(2)}$. Then [2] we may take $\alpha_n = \sigma_n^{-1}$. In particular, using [2], we can write h(z) for domains $|z_1|^{1/l} + |z_2| < 1$ and $|z_1|^{1/2} + |z_2|^{1/2} < 1$, respectively:

$$h(z) = (1 - z_2)^{l-1} [(1 - z_2)^l - z_1]^{-2},$$

$$h(z) = \frac{(1 - z_1 - z_2)^2 (1 + z_1 + z_2) + 8z_1 z_2}{[(1 - z_2)^2 - 4z_1 z_2]^2}$$

We hope systems above can be used for quantization

References

- 1 Yu.F.Korobeinik, A contribution to the representation of holomorphic functions by the series in rational functions, Matem. Zametki, 1982, t.31, N5, 3-16.
- 2 L.A.Aizenberg, Continuation of integral representations with the kernels and quasi-kernels Szegö for n-circular domains, Krasnoyarsk, Preprint IF SO AN SSSR, 1973, 3-34.