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We consider representations of the group SL(n,R) induced by characters of standard maximal parabo-
lic subgroups P* corresponding to the partition n = (n —2)+2. These representations can be realized on
functions on the Grassmann manifolds of rank two. It explains the title. In this paper we restrict ourselves
to the structure of these representations (irreducibility and reducibility). Other properties (intertwining
operators, invariant Hermitian forms, unitarizability) will be considered elsewhere.

1 Maximal degenerate series of SL(n,R) of rank two

Let G = SL(n,R),n > 4. Any element g € G can be written as a block matrix

g=(: ’?) (L.1)

according to the partition n = (n — 2) 4+ 2 of n. Let P* denote the two maximal parabolic subgroups of
G corresponding to this partition. They consist of upper and lower block matrices respectively:

P+:(8 g),P‘:(ZS) (1.2)

For p € C, e = 0,1, let us denote by ¢t the character of R*:

the = |¢|* sgn®t

Define the character w, . of P* by formula:

wp,e(p) = (det ¢)**

where p has one of forms (1.2). Consider the representations

T,fc = Ind(G, PT,wxu,)

Let us describe these representations in “the compact picture”. Let K = SO(n), a maximal compact
subgroup of G . One has the following decompositions

G=PtK=PK (1.3)

(Iwasawa type decompositions). For the corresponding decompositions g = pk the factors p and k are
defined up to the factor in L = K N Pt = KN P~ : pk = prky with py = pl=!, k; = lk,l € L. The
subgroup L is S(O(n — 2) x 0(2)).

Take the Iwasawa type decomposition ¢ = pk,p € P,k € K, with g and p given by (1.1) and (1.2)
respectively. For the block ¢ we have the equation c¢’ = vy’ +68’ (the prime denotes matrix transposition).
We can take for ¢ a symmetric positive definite matrix:

c=(yy + 682 (1.4)

The connected component L. of L containing the identity element is SO(n—2) x SO(2). The coset
space S = K /L, is Grassmann manifold of rank two, the manifold of two-dimensional oriented planes in
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R". We let K act on S from the right (i.e. S is the right coset space), so that S can be realized as the
space of real 2 X n matrices
e ( Uy vy SR )
U1 e Un

with the condition ss’ = E (so that the rows of s are unit orthogonal vectors) and the identification
s ~rs,r € SO(2). We shall denote by s the equivalence class containing s. Let us denote

o B ORI 1)
Pl ( RS
Let D.(S) be the space of complex valued C* functions on S of parity ¢ :

p(ws) = (det w)*p(s), w € O(2)

(we write functions on S as ¢(s) keeping in mind the agreement above or thinking of ¢ to be left invariant
with respect to SO(2)).
The group G acts on S (from the right):

S 5=65-g¢ (1.5)

as follows. Let k be an element of K such that s°k = 5. Decompose kg according to (1.3): kg = pk,p e
Pt k€ K. Then § = s%. The restriction of this action to K is the action by translations: s -k = sk.
The representation T, , acts on D.(S) by the formula:

1E
(Tie(9)9) (5) = ¢ () (det )" (1.6)

where ¢ is the c-block of the matrix p . The definitions (1.5) and (1.6) are well-defined.
Let us write (1.6) in a more detailed way. Using the choice (1.4), we obtain

= (Sgg’s')lﬂ.
Therefore

(Tie(9)9) (5) = ¢ ((s99's') ™/ 2sg) {det(sgg's")}*/*

The representation 7't is reduced to T~ by the outer automorphism g — g"l(a Cartan involution):

T,(tc(g) = T;A-.s(glﬂl)

The representations T, are continuous [1], Ch.8, in the sense that the function T, (9)¢ from G x D, (S)
into D(S) in continuous, and indefinitely differentiable, i.e. for each ¢ € D.(S) the function T:E (9)¢
from G to D.(S) is of class C*°. We preserve the symbols of these representations for the corresponding
representations of the Lie algebra g of G .

For n = 4 one has a homomorphism of G onto SOq(3,3) with the kernel {E}. On the other hand,
under Tilr this kernel goes to the indentity operator. So in fact ije are representations of SOq(3, 3).
They were studied in [4]. So from now on we shall assume n > 4. Notice that for n = 4 the subgroups
P* and P~ are conjugated by an inner automorphism - the conjugation'by means of the matrix

(27%);

so that T;F. and T}, are equivalent.
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2 Harmonic analysis on the Grassmann manifold

The manifold S = K/L, is a compact symmetric space, indeed, L is the fixed point subgroup of the
involution (k) = IkI where I is the diagonal block matrix with the diagonal 1,...,1 —1,—1. The
Lie algebra ¢ of K is the direct sum E=[+m of eigenspaces of ¢. The rank of S is equal to 2. The
quasiregular representations 7 of K on D(S) (the representations by translations) is the direct sum of the
representations 7(¥), ¢ = 0, 1, acting on D,(S). Since S is a symmetric space, both () decompose into
the multiplicity free direct sum of irreducible representations. Each irreducible subspace contains exactly
one (up to the factor) spherical function, it is constant on L.-orbits. So let us describe these orbits. Let
us take in m the maximal Abelian subalgebra a consisting of matrices

X = tl(Enl = Eln) -k tZ(Eﬂ—l,2 = E2,ﬂ—1)
where E;; is the standard matrix basic. Let A = exp a. The set s°A consists of points

L 0 sintg 0 ... 0 costs 0
=\ eints 0 [ i) 0 cost

One has the Cartan decomposition K = L. AL.. Hence any L.-orbit on S is completely defined by its
intersection with s°A. This intersection is obtained from a given point by the following transformations:
a) t; — —t1, b) ta — —ta, ¢) (t1,t2) — (81 + 7, t2 + ), d) (t1,12) — (f2,11). Therefore, L.-orbits can be
parameterized by the two functions z, y:

z = (1/2)(cos®t; + cos’ty), y = costjcosty, (2.1)
so that functions ¢ on S constant on L.-orbits are functions of z, y:
p(s) = F(z,y) (2.2)

For variables z, y given by (2.1), points (z, y) fill out the domain D on the plane zOy defined by inequalities
lyl <z <(1/2)(y* + 1). Let ds be a K-invariant measure on S. For functions ¢ invariant with respect
to L, (i.e. of the form (2.2)) this measure gives rise to the measure

C|sintlsint2|“'4lsin2t1 — sin’ty|dt dty =

=C(1 -2z + )"~ 2dzdy (2.3)
Let (, ) denote the inner product correspoding to the measure (2.3) (with C' = 1):
ST 2y(n—5)/2
(Fy, Fo) = f Filz, piFale, i1~ 25 2 ) 2 do gy (2.4)
D

Similarly, L-orbits on S can be parameterized by the functions (they were used in [3]):
€ = sin®ty +sin’ty = 2(1 — z), n = sin®tysin’ty = 1 — 2z + y? (2.5)

In [3], Koornwinder introduced a family of polynomials R;"ﬁ Y(&,m) in €,n with highest term const -

,m

¢-mp™ which are obtained by orthogonalization of the sequence 1,£,7,£% &n,n%,€3, ... with respect to
the measure

n*(1— €& +1)° (€2 — 4n)" dédn
on the domain 2,/ < £ < 1+n.
Theorem 2.1. Irreducible constituents 7,() of 7€) can be labelled by pairs z = (I,m) of integers
with | > m > 0. The spherical function ®,(%) in the corresponding space /AQ N D.(S) normalized by
®,)(s0)=1 is the following polynomial in z,y, see (2.1) and (2.2):

®,)(z,y) = y* R0 (€,) (2.6)

with a = (n —5)/2,8=¢— 1/2,7 = 0 where £, are ezpressed in terms of z,y by (2.5).
Proof. For =0 the theorem was proved in [3]. For £ =1 the theorem is proved by the direct check
that functions (2.6) satisfy differential equations defining spherical functions O.
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Write down explicit expressions. We have

. =3 "dl) . V¥ Wir(z,y) (2.7)

where the summation is taken over (k,r) such that 0 <r <k <[, 7 <m,

D o B e (e M e oo

dggmkr (Zk 2r +1) k r k
)["](n 2)[ ](n——.’i [r] %)[ ]
e (-—-k+r,—!+m,—l— m—e—(n—4)/2,1/2; |
e ~l4+r—l—k—-e—(n—-5)/2,1,
War(z,8) = (1 - 22+ ) *+2p_ (=2

V1 21:+y)

P;(t) is the Legendre polynomial, al¥l = a(a 4 1)...(a+ k — 1) . One can see that ®,) is a linear
combination of functions (1 — )’ (1 — 2z 4 y*)*y* where p<l,p+q <1+ m.
3 The structure of maximal degenerate series representations
Let (, ) be the inner product in L*(S,ds) :

(0.9) = [ ols)PEYs (31)

)

The measure ds is transformed under (1.11) as follows:
ds = |det¢]™" ds

Therefore the form (3.1) is invariant with respect to the pairs (T"' 185 ) and (T‘ 77 )

B€) " —f—n,E BE) T ——n.E
(TE(9)¢:¥) = (2. T2-nl 1)) (3.2)
So T*,Z are unitarizable for Rey = —n/2 , the invariant inner product is (3.1). We shall see below, that

these representations are irreducible. Thelr unitary completions form the continuous series of unitary
irreducible representations.
The centralizer of L in g is one-dimensional, let us take for a basis the element

pamelh

"n’'n n

The operator Ti (Zo) preserves the set of L-invariant functions in D.(S) , so that it gives rise to a
differential opera.tor in variables z,y . This differential operator is £2.L, where

a 2
ﬁu=(212-z—y)i+(w-1)y +#(——z)
It follows from (3.2) that

(LuF1, Fa) = (F1, Log-nF2)

Let us take 4 vectors on the plane:
e1 = (1,0),e2 = (0,1),es = (0,—1),e4 = (—1,0)
and for y € C,e = 0,1 define 4 linear functions of z = (I, m) :
Bi(p,e52) = (1/2)(p—€) = 1,
Pa(p,€;2) = (1/2)(n+1—¢€) -
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Ba(p,€;2) = (1/2)(p+n—3+¢) +m,
Ba(p,€;2) = (1/2)(p+n—2+¢) +1.

There are relations between them:
Bi(p,€;2) + Ps—i(p, 6;2) = p+ (n — 2)/2

Bi(p,€; 2) + Bs—i(p*,€;2) = —1
where
p=—p—n

Lemma 3.1 The operator L, carries W, = Wi, to a linear combination of W, , W ye,, Wi, :

LaWe = (=222 + 1+ m) W + (§ = 1) Waer +
+(=m)? [(=m)’ = 3] (B = m) Wi,
The lemma is proved by means of the differentiation formulae for the Legendre polynomials, see, for
example, [2] 10.10.
Lemma 3.2 The operator L, carries @Sf) to a linear combination of <1>£‘) and neighboring functions

€ .
o),

4
£48) = 70 (1,63 2) 8 + 37 (652) B (1 €32) B33,
i=1

where
(-m+1)(+252) (+252+¢) (1+m+ 52 +¢)

Tl-m+ ) (l+m+224e) (A+24e) (A+ 252+
2 2 2 2
B (I—=m)(m+252) (m+ 252 +¢e) I+ m+ "2 +¢)
(-m+3)(I+m+2523+¢) @m+ 252 +¢) 2m+ 252 +¢)

=

T2 =
2 (l=m+1)m(m—j3+e) (I+m+ 25" +e)
(—m+3)(+m+252+e) 2m+ 255 +¢) (2m+ 252 +¢)

o (1—m) (1 +3)(+e) (I +m+ 25 +¢)
T l-m+ ) (+m+rB ) A+ 4e) U+ 252 +e)

Y=

1, n=6 Pamit(232+e) 1+ (2504 m+} (252 +e) (3 +e)
nT 2 A+ +e) 2+ 54e) @m+ 252 +e) 2m+ 20 +e)

The lemma is proved using Lemma 3.1, formulae (2.7), (3.3) and pairwise orthogonality of 3L
with respect to the inner product (2.4) and some formulae about 4F3 from [6]. We omit these rather
cumbersome calculations. In particular, in certain cases we resorted to the help of a computer (Maple
V).

Let Z be the lattice of the pairs z = (I,m) of integers with § > m > 0 (K-types for ().
Let us call the line §; (i, €;z) = 0 on the z-plane a barrier if it meets the lattice Z and the intersection
ZN{B; > 0} does not coincide with Z. Then p has to be integer. If the line §; =0 is a barrier, we denote
by Vi (u,€) the subspace given by the inequality f; (u,€;2) > 0, i.e. the sum of 7 with z satisfying
this inequality. The following lemma follows from the definition of 8; immediately.

Lemma 3.3 For given y,& the number of barriers is not greater than 1.

Let us point out g, & (u € Z) for which §; = 0 is a barrier (the sign = denotes the congruence modulo
2):

=1 N> el =¢

i=2:p>e—1lu=e-1

i=3:p<l—-n—gp=l-n—c(ie p*2e-1Lp*=ec-1)

izd:p<—n—g,p=n+e (e p*2e,pu" =¢)
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Theorem 3.4 If the line B; (it,€;z) = 0 is a barrier, then the subspace V; (u,€) is invariant for Tf'e.
There is no other invariant subspaces. The representation T,fs 15 irreducible except when p is integer and
satisfies one of two inequalities: p >e—1orp<l—n—¢ (1e. p* > e—1). In this case there is ezactly
one invariant subspace V; (u,€)(see the list after Lemma 3.3).

The proof is carried out analogously to the proofs of similar theorems in [4], [5].
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