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For a holomorphic function from the unit disc into itself, the well known Harald Bohr's
theorem estimates the sum of absolute values of its Taylor components. In the paper, this
result is generalized to bounded circled symmetric domains
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� 0. Introduction

0.1. The following theorem was proved by Harald Bohr [1] for |z| < 1/6, then soon
improved to |z| < 1/3 from remarks by M. Riesz, I. Schur, F. Wiener 1:

Theorem 1 (Bohr 1914) Let ∆ ⊂ C be the unit disc |z| < 1. Let f : ∆→ ∆ be a
holomorphic function from the disc into itself with the Taylor expansion

f(z) = a0 + a1z + a2z
2 + . . . .

Then
∞∑
k=0

∣∣akzk∣∣ < 1 (1)

for |z| < 1/3. The value 1/3 is optimal.

This result has been extended by Liu Taishun and Wang Jianfei ([3], 2007) to
the bounded symmetric domains of the four classical series, and to polydiscs, using
a case-by-case analysis, as follows:

Theorem 2 Let Ω be an irreducible bounded symmetric domain of classical type in
the sense of Hua Luokeng [4], or a polydisc. Denote by ‖ ‖Ω the Minkowski norm
associated to Ω. Let f : Ω→ Ω be a holomorphic map and let

f(z) =
∞∑
k=0

fk(z)

1See [2] for biographical elements about Friedrich Wiener.
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be its Taylor expansion in k-homogeneous polynomials fk. Let φ ∈ Aut Ω such that
φ(f(0)) = 0. Then

∞∑
k=0

‖Dφ(f(0)) · fk(z)‖Ω

‖Dφ(f(0))‖Ω

< 1 (2)

for all z such that ‖z‖Ω < 1/3.
For ‖z‖Ω > 1/3, there exists a holomorphic map f : Ω→ Ω such that (2) is not

true.

In [5], we give a classi�cation independent proof of this result, which is valid for
any bounded circled symmetric domain.

0.2. In the above generalization of Bohr's theorem, one considers the Taylor
expansion

f(z) =
∞∑
k=0

fk(z)

of a bounded holomorphic function or map, and one asks for which z the inequality
(2) holds. One may ask the same type of question for other decompositions of f . For
example, the following problem has been considered recently by several authors:

Problem 1. Let Ω be the unit ball of the `p norm:

Ω =

{
(z1, · · · , zn) ∈ Cn |

n∑
k=1

|zk|p < 1

}
.

Let f : Ω → ∆ be a holomorphic function and consider the expansion of f in
monomials

f(z) =
∞∑

k1,...,kn=0

ak1···knz
k1
1 . . . zknn .

Determine the best constant K such that z ∈ KΩ ensures

∞∑
k1,...,kn=0

∣∣ak1···knz
k1
1 . . . zknn

∣∣ < 1

for all f : Ω→ ∆.

For results about this type of problem, see [6], [7], [8], [9], [10], [11].

� 1. H. Bohr's theorem

1.1. We present here a rather elementary proof of Bohr's theorem (Theorem 1),
based on a lemma of F. Wiener. There are other proofs of Bohr's theorem in the
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literature, for example by S. Sidon ([12], 1927), following L. Fej�er's method of positive
kernels [13]; the same proof was published later by M. Tomi�c ([14], 1962).

For a holomorphic function f : ∆→ ∆ with Taylor expansion f(z) =
∑∞

k=0 akz
k,

denote by M(f, r) the sum of absolute values:

M(f, r) =
∞∑
k=0

|ak| rk.

Lemma 1 (F. Wiener) Let f : ∆ → ∆ be a holomorphic function, with Taylor
expansion f(z) =

∑∞
k=0 akz

k. Then for all k > 0,

|ak| 6 1− |a0|2 . (3)

See [15] for an elementary proof of this lemma.

Proof of Bohr's theorem. (a) Direct part. Using (3), we deduce

M(f, r) =
∞∑
k=0

|ak| rk 6 |a0|+ (1− a0a0)
r

1− r

and, for r 6 1/3,

M(f, r) 6 |a0|+
1

2
(1− a0a0) = 1− 1

2

(
1− |a0|2

)
< 1,

as |a0| = |f(0)| < 1.
(b). To prove that the bound 1/3 in Theorem 1 cannot be improved, one

considers, for 0 < α < 1, the function

f(z) =
α− z
1− αz

and one checks easily that M(r) > 1 when r > (1 + 2α)−1; as (1 + 2α)−1 → 1/3 + 0
when α → 1 − 0, there exists for each r > 1/3 a holomorphic function f : ∆ → ∆
such that M(f, r) > 1. �

1.2. Generalizations in dimension 1. Other Bohr type theorems hold in
dimension 1 for various classes of holomorphic functions f : ∆ → ∆. Consider
the following classes of analytic functions on the unit disc:

Fm =

{
f : ∆→ ∆ | f(z) =

∞∑
k=m

akz
k

}
(m ∈ N),

Fm,α =

{
f : ∆→ ∆ | f(z) = αzm +

∞∑
k=m+1

akz
k

}
(m ∈ N, 0 6 α < 1).
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De�ne the bounding functions

Mm(r) = sup {M(f, r) | f ∈ Fm} (m ∈ N),

Mm,α(r) = sup {M(f, r) | f ∈ Fm,α} (m ∈ N, 0 6 α < 1)

and the corresponding Bohr numbers by

Bm = sup {r |Mm(r) < 1} ,
Bm,α = sup {r |Mm,α(r) < 1} .

With these notations, the original Bohr theorem means that B0 = 1/3.
In [14] (1962), M. Tomi�c uses an analogue of the argument in [12] (Sidon, 1927)

to prove that

B1 >
1

2
.

An elementary proof for this, which uses another result of L. Fej�er ([16], 1914),
can already be found in a note of E. Landau ([17], 1925). In [18] (1955), G. Ricci
considered a wide class of problems of the same type and proved, among other
results, the estimate

3

5
< B1 6

1√
2
.

The exact value

B1 =
1√
2

was given by E. Bombieri ([19], 1962). The estimate B1 > 3/5 follows from Wiener's
lemma, but the exact value B1 = 1/

√
2 is obtained by another lemma of E. Landau,

which is easily proved using Cauchy�Schwarz inequality:

Lemma 2 (E. Landau 1913)

M0(r) 6
1√

1− r2
,

M1(r) 6
r√

1− r2
.

Note that the �rst estimate does not give any information about B0, while the
second provides the exact value of B1.

1.3. More generalizations Estimates for the Bm's and the Bm,α's are given in
([18], 1955) and ([19], 1962) by G. Ricci and E. Bombieri; these results, including the
above result about B1, are ignored in most of recent papers about Bohr's theorem.
Let us cite some results about M0(r):

(1) (Bombieri [19], 1962)

M0(r) =
3−

√
8(1− r2)

r

(
1

3
6 r 6

1√
2

)
.
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(2) (Bombieri�Bourgain [20], 2004)

M0(r) <
1√

1− r2

(
1√
2
< r < 1

)
.

(3) (Bombieri�Bourgain [20], 2004) For ε > 0, there exists C(ε) > 0 such that,
as r → 1− 0,

M0(r) >
1√

1− r2
− C(ε)

(
ln

1

1− r

)(3/2)+ε

.

� 2. H. Bohr's theorem for bounded symmetric domains

2.1. Let Ω ⊂ V be a bounded circled homogeneous domain in a �nite dimensional
complex vector space V . Denote by ‖ ‖Ω the spectral norm associated to Ω.
For notations and results about complex bounded symmetric domains and their
associated Jordan triple structure, see [21], [22].

The main result in [3] is Theorem 2, which is proved there for domains of type
I (rectangular matrices) and for polydiscs.

This theorem is valid for any bounded circled homogeneous domain.

2.2. Di�erential of automorphisms. The proof in [3] depends on the following
result, which is proved by the authors for classical domains of type I and IV, using ad
hoc computations, but which is valid for any bounded circled homogeneous domain:

Theorem 3 Let Ω ⊂ V be a bounded circled symmetric domain. Let ‖·‖Ω be the
associated spectral norm on V . Let u ∈ Ω and let φ ∈ Aut Ω such that φ(u) = 0.
Then the operator norm of the derivative of φ at u is

‖dφ(u)‖Ω =
1

1− ‖u‖2
Ω

; (4)

moreover,

‖dφ(u)‖Ω =
‖u‖Ω

1− ‖u‖2
Ω

. (5)

Sketch of proof. Denote by { , , } the Jordan triple product on V , by D(x, y)
and Q(x) the operators de�ned by D(x, y)z = {xyz} and 2Q(x)y = {xyx}, by

B(x, y) = idV −D(x, y) +Q(x)Q(y)

the Bergman operator (see [21]). For u ∈ V , denote by τu the translation z 7→ z + u
and by τ̃u the rational map

τ̃u(z) = zu,
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where zu is the quasi-inverse

zu = B(z, u)−1 (z −Q(z)u) ,

de�ned in the open set of points z such that B(z, u) is invertible.

For u ∈ Ω, the map

φu = τ̃u ◦B(u, u)−1/2 ◦ τ−u (6)

is an automorphism of Ω which sends u to 0. The derivative of φu at u is then

dφu(u) = B(u, u)−1/2. (7)

(Recall that for u ∈ Ω, the operator B(u, u) is positive (with respect to the Hermitian
scalar product on V : (x | y) = trD(x, y)), so that B(u, u)−1/2 is well de�ned). Denote
by ‖ ‖ the Hermitian norm on V (‖z‖2 = trD(z, z)) and by ‖ ‖ the associated
operator norm for linear endomorphisms of V . The spectral norm ‖ ‖Ω on V is given
by

‖z‖2
Ω = ‖Q(z)‖ ; (8)

the unit ball of this norm is Ω. We denote also by ‖ ‖Ω the associated operator norm
for linear endomorphisms of V .

Using the spectral decomposition of u, the expression of B(u, u) in the associated
Peirce decomposition, the relation (8) and the relation

Q(B(u, u)−1/2z) = B(u, u)−1/2Q(z)B(u, u)−1/2, (9)

one obtains ∥∥B(u, u)−1/2
∥∥

Ω
=
∥∥B(u, u)−1/2

∥∥ =
1

1− ‖u‖2
Ω

. (10)

The theorem easily follows. �

Let Ω be a bounded circled symmetric domain. Let f : Ω→ Ω be a holomorphic
map. Denote by

f(z) =
∞∑
k=0

fk(z)

its Taylor expansion in homogeneous polynomials fk of order k. The following lemma
generalizes Lemma 1 to bounded symmetric domains.

Lemma 3 Let u = f(0) and let φ ∈ Aut Ω such that φ(u) = 0. Then

‖dφ(u) · fk(z)‖Ω 6 ‖z‖
k
Ω . (11)

See [5] for the proof. Along the same lines as in [3], one then proves, using this
lemma:
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Proposition 1 Let Ω be a bounded circled symmetric domain. Let u ∈ Ω and let
φ ∈ Aut Ω such that φ(u) = 0.Then

∞∑
k=0

‖dφ(u) · fk(z)‖Ω

‖dφ(u)‖Ω

< 1 (12)

for all f : Ω→ Ω such that f(0) = u and for all z such that ‖z‖Ω 6 (2 + ‖u‖Ω)−1.

One proves also (see [5]):

Proposition 2 Let Ω be a bounded circled symmetric domain. Let u ∈ Ω and let
φ ∈ Aut Ω such that φ(u) = 0. Assume ‖u‖Ω > 1/3 and (1 + 2 ‖u‖Ω)−1 < a < 1.

Then there exist a holomorphic map f : Ω → Ω with f(0) = u and z ∈ Ω with
‖z‖Ω = a, such that

∞∑
k=0

‖dφ(u) · fk(z)‖Ω

‖dφ(u)‖Ω

> 1.

Proof of Theorem 2. Proposition 1 shows that inequality (12) is satis�ed for all
maps f : Ω → Ω and all z such that ‖z‖Ω < 1/3. As (1 + 2 ‖u‖Ω)−1 → 1/3 as
‖u‖Ω → 1− 0, proposition 2 implies that 1/3 is the optimal bound. �

2.3. Some open questions.

Problem 2. Let f : Ω→ Ω be a holomorphic map.

(1) With the assumption f(0) = 0, Theorem 2 gives

∞∑
k=0

‖fk(z)‖Ω < 1

for all z such that ‖z‖Ω < 1/2. Is the optimal bound equal to 1/
√

2, as proved by
E. Bombieri [19] in the one dimensional case?

(2) What is the same optimal bound for all maps f satisfying f(0) = u, with
u ∈ Ω �xed? Propositions 1 and 2 show that this optimal bound belongs to the
segment [

1

2 + ‖u‖Ω

,
1

1 + 2 ‖u‖Ω

]
.

In the one dimensional case, this is Ricci's estimate (see [18]). But Bombieri's results
for the one dimensional case show that this estimate may be sharpened: in particular,
the optimal bound in dimension one is 1/

√
2 when u = 0, and (1 + 2 ‖u‖Ω)−1 when

1/2 < ‖u‖Ω < 1.
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For Ω a bounded circled symmetric domain, a natural problem generalizing
H. Bohr's problem would be the following.

Problem 3. Let Ω ⊂ V be a bounded circled symmetric domain of rank r. Let
f : Ω → Ω be a holomorphic map and consider the Schmid decomposition of its
Taylor expansion

f(z) =
∑

k1>...>kr>0

fk1···kr(z)

(where the fk1...kr 's are polynomials in the irreducible K-modules for the linear
subgroup K of Aut Ω). Determine the best constant C such that z ∈ CΩ ensures∑

k1>...kr>0

‖fk1...kr(z)‖Ω < 1

for all holomorphic maps f : Ω→ Ω.
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