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of textile industry of Russia. For this model, the optimal control problem is investigated for the
solvability. For the case of ill-posed dynamic model, the possibility of correction is considered on
the base of the approach by I. Eremin.
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We study some properties of the solutions of differential systems describing gene regulatory
networks, where instead of linear functions on the right-hand side we consider polynomial
functions. We have obtained some different properties of solutions’ behavior in the sufficiently
close vicinity of singular domains, in particular, walls although in regular domains the
dynamics coincide. Thus, linear systems do not describe real dynamics of a gene network.

Consider the system
;= Fi(21, ey 2n) — Gi(21, ooy 2n) iy, 1=1,..,m, (1)
where
Fi(z1,.y2n) 20, Gi(21,...,2n) >0 (0< 2; < 1)

are the (regulated) production rate and the (regulated) relative degradation rate, respectively.
Each z; is a function of the single gene concentration x;, i.e. z; = H(x;,0;,q;). The response

functions describe gene interactions in the gene regulatory network. It depends on 2 parameters

0>0,q>0. If ¢g— 0, then H becomes the step function with the unit jump at t=60: ¢ — 0

0 if x<4
= { 1 if x>0
. . o /e
An example is the Hill function given by z = H(z,0,q) = pRyFEIYFR

The Boolean-like formalism

In (1) let us assume that ¢; — 0 forall i =1,...,n.
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This results in
i?i:.FZ'(Bl,...,Bn)—Gi(Bl,...,Bn)l‘i, 1= 1,...,n, (2)

where B; =0 or 1 are Boolean variables.

This simplified Boolean model (2)

As soon as this formalism is adopted we can make some conclusions resulting in the assump-
tions which are common in the analysis of gene regulatory networks.

Example l. Consider two scalar functions f(z,7) = 23 — 222 + 32 — z and g(z,2) =
= 2z — x. They are different, but the difference is not seen within the Boolean-like formalism
(where B™ = B for any Boolean variable and any positive n ), so that f(B,x) = g(B,z). In
other words, the systems (equations) @ = f(B,z) and & = g(B,z) are just identical.

That is why a usual assumption put on the right-hand side in the Boolean-like models is
linearity of the functions in each variable z;.

Theorem 1. For an arbitrary C' -system

:Ifi = Fi(zl, ...,Zn) —@(zl, ...,zn):ci 1= 1, N

such that f;(B) = F;(B),G;(B) = G;(B) for any Boolean vector B = (B, ..., By).

Although the simplified model is Boolean, the actual model is smooth. Can we argue for the
assumptions of linearity in each z; in this case?

The common answer from biologists is «yes», because the sufficiently steep sigmoid function
z = H(z,0,q) is close to the step function, so that H"(z,0,q) ~ H(x,0,q) for small ¢ > 0,
and in the limit we obtain the equality H"(x,0,0) = H(x,0,0), so that if we assume that the
limit dynamics is good enough to approximate the true dynamics for small ¢ > 0, then the
assumption of linearity may be put on the right-hand sides of the system. Can this assumption
be justified in a rigorous way?

A more general setting

The Boolean-like formalism is used in other fields, where the right-hand side may be different
from that used in the gene networks. Consider a smooth dynamical system

i = f(z,z) (3)

where © = (21,...,2y), 2 = (21,..,2n), fi = fi(z1,.s2n, i), 2zi = H(xi,0;,¢) (¢ > 0,
i=1,...,n) (for example, fi(z,z) = F;(z) — Gi(2)z; for gene networks).
In the limit, we obtain the Boolean-like representation:

z = f(B,x)

where B = (B4, ..., By) is a Boolean vector, i. e. B; =0 or 1.
Example 2. Let us consider two systems

Ltl = 0.12’1 + 0.18371
To = 229 — X2,

i = 23 —0.921 + 0.1814
i‘z = 222 — X2.

They are identical within the Boolean-like formalism, as B% —0.9B; = 0.1B; for any Boolean
Bi, so that the two dynamics should be expected to be close to each other for sufficiently steep
response functions z; = H(x;,0;,¢q;), where ¢; > 0 are small, at least if we rely upon Theorem 1.
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Singular Perturbation Analysis

We claim that Theorem 1 and the Boolean-like formalism in its classical setting are not
sufficient. To see this, we analyze the behavior of the solutions in a vicinity of a threshold value.

For the sake of simplicity we assume in the sequel that x; is close to its threshold value 6
(i.e. o1 is a singular variable), while xa,...,x, stay away from their respective threshold values
02, ...,0, (i.e. they are regular variables). The equation (3) can then be split into the system

1 = fi(z1, 2R, 1)
tr = fr(21, 2R, TR),

where g = (2)rer, 2rR = (2r)rer, [rR = (fr)rer-
Replacing x1 with 21 = H(x1,01,q1) yields the following equivalent system («the full
system»):
z1(1 — 2z
Mfl(Zl,ZR,xl)
x1

ij = fR(Zh ZR; xR)a

qiz1 =

where x1 = H (21,01, q1).
To understand the solutions’ behavior around the threshold z; = 61 one uses the stretching
transformation 7 = t/q taking the full system into the boundary layer system:

/ 1-—
z = Mfl(zl,zmm)

J’JR = qlfR(Zl) ZR, xR)a

where z1 = H 1(21,61,q1) and le is the derivative with respect to the fast time 7.
Letting ¢; — 0 we arrive at the boundary layer equation

i 21(1 — Zl)

Zl - 01 f1(217BR791)7

where Br = lim zp.
qi—

The behavior of the solutions of the original system around the threshold plane z; = 6;
depends on asymptotic stability of stationary points of the boundary layer equation. For instance,
sliding modes only occur if the boundary layer equation has an asymptotically stable stationary
point zj € (1). In this case the limit dynamics in the threshold plane (where g; = 0) obeys the
reduced system

i‘R = fR(ZT, BR,.%'R).

If there is no stable stationary point inside (1), then either z; = 0 or z; = 1 must be
asymptotically stable, which gives solutions traveling through the threshold plane z; = 6;
(i. e. no sliding modes can occur).

Example2 (cont.)

Let us look closer at the boundary layer equations for the systems from Example 2.

2y =21(1 = 21)(0.12, + 0.18),

2y =21(1 — 21) (22 — 0.921 + 0.18)

The singular perturbation analysis shows that the limit dynamics in the linear case and in
the polynomial case can be very different. In the other hand, if ¢; — 0, then the Boolean-
like formalism as it appears in Theorem 1 does not distinguish between polynomials and linear

1161



ISSN 1810-0198. Bectauk TTY, 1. 16, Boim. 4, 2011

functions, because B™ = B for any Boolean variable. This means that the conventional assump-
tion of linearity in the Boolean-like formalism does not hold from the mathematical point of
view.

The general boundary layer equation

The question we want to address below is as follows: What is the minimal degree of the
polynomials which would be enough to distinguish between all possible kinds of sliding modes
in the limit. The answer is 3.

The equation

/ 21(1 — 2
2 = l(ell)fl(thR,@l),

where Br = lim0 Zpr, may have many stationary solutions in (1). However, only the leftmost
4i—

and the rightmost stationary solutions can provide sliding motions in the threshold plane. This
is due to the fact that the initial values z1(0) are either 0 or 1.
Indeed,

21(0) = qlligloH(azl,Gqul) =0ifxq1 <0y and 1 if 21 > 64.

If 1 < #;, then z1(0) = 0, which means that z1(7) will tend to the stable leftmost
stationary point z%l) € (0,1). If now the total number of stationary solutions in (1) is even,
then the rightmost stationary point within this interval (0,1) is unstable. The plain z; = 6;
becomes attractive on the left and repellent on the right. The other points are not essential for
the limit dynamics. That is why the polynomials of degree 2 in 2z; can capture this kind of
asymptotical behavior.

T heorem?2. Assume that the boundary layer equation has a nonempty even number of
stationary solutions in (1). Then the threshold plane x1 = 61 will be attractive on one side and
repellent on the other.

In this case an arbitrary C'-function f in the system i = f(z,2) can be in the limit
replaced with a quadratic polynomial.

Assume now that the number of stationary solutions in (1) is odd. In this case z(7) will
tend either to the leftmost or to the rightmost stationary point which both will be asymptotically
stable. The threshold plain becomes therefore attractive on the left and on the right. The other
stationary points are not essential for the limit dynamics.

This kind of asymptotical behavior is captured by the polynomials of degree 3 in 2.

T heorem 3. Assume that the boundary layer equation has a nonempty odd number of
stationary solutions in (1). Then the threshold plane x1 = 01 will be attractive on both sides.
In this case an arbitrary C!-function f in the system @ = f(z,2) can be in the limit replaced
with a cubic polynomial.

Conclusions
We considered a gene regulatory network
I"i == Fi(zl, ceny Zn> - Gi(zl, ceey Zn):L‘Z', 1= ]_, ey 1,
where F;, G; are general C'-functions.

We examined the Boolean-like formalism which is meant to describe the limit dynamics of
this system when z; become Boolean.
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The conventional models where F; and G; are replaced with multilinear functions (linear
in any z; ) and which are based on the «<mathematical» > argument that B" = B for Boolean
variables, do not capture at least two essential kinds of the limit dynamics.

— The functions F; and G; should be replaced with multicubic polynomials (cubic in any
z; ) in order that all possible kinds of limit dynamics will be captured.

— These conclusions are also valid for the gene networks with special delays (integral and
degenerate).
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TAIIIEHUE KOJIEBAHUI YIIPYTON CUCTEMEI CTPYH

© E.H. IIpoBoroposa

Karouesnie caosa: kpaeBas 3amada Ha rpade; TPAHUYHOE yIIPABJICHNE; TIEPEBO/ CUCTEMBI U3
HaYaIhbHOTO B COCTOSTHUE TIOKOSI.

B pabore paccMaTpuBaeTcs CHCTEMA W3 1M CTPYH, 3aKPEIMJIEHHBIX 10 TUMY Tpada-3BE3IbI.
Takue maremaTuvuecKre OOBEKTHI ABISIOTCS OCHOBONH MATEMATHYECKUX MO/l TPOIeccoB
KOJTe0aHUI B AHTEHHBIX KOHCTPYKIUAX PA3TUIHBIX TUIOB. [IpeacTaBien MeTo HaX0X AeH s
TPAHUYHBIX YIPABISOMNX BO3AEHCTBUI, COCTOAININNA B MEPEBOIE MPOIECcCca KomeDanuit cu-
CTEeMbI U3 3aJaHHOTO HAYAJIBHOT'O COCTOAHUA B COCTOAHUE TIOKOA. I/IC]TOJIBZBYQTCH CTIEKTPaJIb-
Hast TexHuka (aHann3 Oypbe), MO3BONSIOMIAS CPABHUTEIBHO JIEIKO MTPEOIOJIEBATH CJIOXKHO-
CTH, TTIOPOXK IeHHBIE TeomeTpueil rpada. [maBHbIM pe3yabTaToM PabOTH! ABJISIIOTCS (DOPMYJIBI,
OTIPEIETSIONTNE NCKOMbBIE TPAHUYHBIE YIIPABIEHUS KAK (PYHKIIUNA BPEMEHH.
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