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§0. INTRODUCTION

The Poisson transform, as well as the Fourier transform and spherical functions, is one of the main
tools of harmonic analysis on homogeneous spaces (in this connection, see [11]). For applications of
it, see for example, [2], [3], [7], [8], [11], [12], [13], [15]. In this paper we consider this transform for
hyperboloids SOy(p, q)/SOo(p,q —1),¢ = 2,in R ", an important class of semisimple symmetric spaces.
Our main interest is an asymptotic behaviour of the Poisson transform at infinity. We write down explicit
asymptotic decompositions of Poisson transform for arbitrary C'* functions. For K-finite functions these
decompositions turn out to be absolutely convergent series. For ”basic” functions (whose powers form
the decompositions) we take both exponents and some other (perhaps more convenient) functions. In
this paper we consider the general case p > 1, the case p = 1 (hyperboloids of one sheet) was studied in
our paper [1].

§1. REPRESENTATIONS OF THE GROUP SOq(p, q) ASSOCIATED WITH A CONE

In this paragraph we recall some facts about representations of the group G = SOQq(p, q) associated
with a cone, see [9]. Besides it, we give explicit formulae for eigenvalues of an operator AE,’,Z, see (1.14)
and (1.15). They generalize formulae obtained in [9] for eigenvalues of an intertwining operator A, ..

Let us consider in R ™, n = p+ ¢, the bilinear form

n
[2,9] = —2191 — ... — TpYp + Tp41Ypt1 + o+ Talbn = D Niditi-
=1
M=..=A =1L u=..=A=1n=p+q,p224q 22 The group G is the connected
component of the identity of the group of all linear transformations of R " preserving this form. We shall
assume that G acts on R ™ from the right: z — zg, hence we write vectors z in row form.
Consider two accompanying spaces R P and R ? consisting of vectors (z1,...,zp) and (Zp41, ..., Zn). By
(, ) we denote the standard inner product in both spaces. For z € R™ we denote

|z] = yf2} + ...+ 22.

Let S be the intersection of the cone [z,z] = 0 and the cylinder || =1, z € R". It is the direct product
Sy x Sy of two unit spheres S; = SP~! CR” and S; = S7~! C R Y, so that a vector s € S is the pair

s=(u,v), ueR? veR? (yu)y=1, (v,v)=1 (1.1)

Let K denote the maximal compact subgroup of G preserving |z| : K = SO(p) x SO(q). It acts on S
transitively, each component on its own sphere, so that S is a symmetric space of K, the stabilizer K¢ of
the point s° = (1,0, ...,0,1) is isomorphic to SO(p — 1) x SO(q — 1).

The Euclidean measure ds on S is the product dudv of the Euclidean measures du,dv on the corre-
sponding spheres. It is invariant with respect to K. The volume of S is equal to £,9Q,, where

Q, =277/ [T(r/2).
* Partially supported by Goskomvuz RF (grant 95-0-1.7-41).
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Let Ay, Ay denote the Laplace-Beltrami operators on spheres Sy, S respectively. Then the Laplace-
Beltrami operator Ag on S is the sum of the operators A; and As.
Let R denote the representation of K by rotations in D(S) = C*(S):

(R)) (5) = p(sk), k€ K

It is unitary with respect to the inner product

(w0 = [ wepds. (1.2)

The representation R decomposes into a direct sum of pairwise non-equivalent irreducible representa-
tions p, on spaces H, = H,('") ® HY, where z = (1, m) is a pair of integers called a weight. Here [ ranges
Z or N =4{0,1,2,...} for p= 2 or p > 2 respectively, similarly m ranges Z or N . Therefore the lattice
Z of weights z consists of integer points of the plane (p = ¢ = 2), of the upper half-plane (p = 2,¢ > 2),
of the right half-plane (p > 2, ¢ = 2), of the first quadrant (p > 2,9 > 2).

The space H, is an eigenspace of the operators A; and A, and therefore of the operator Ag:

Arp=Xdip, Asp=Xdap, Asp=Xp, (p€H;)

where
)11 :1(2—}9—[), /\2 =m(2—q—m), Az =A1+/\2.

For p > 2,¢ > 2 the spherical function in H, with respect to Ky is the product

"J’)z(s) = "bep)(sl) d’srz)(sn)s (13)

where
r—2
2

¥ = Cnt (0)/Ca (1), r>2,

C2 (t) being the Gegenbauer polynomial. If p = 2 or ¢ = 2 then the corresponding factor in (1.3) has to
be replaced by (s; + z'sg)r or (8n—1 + 18, )™ respectively.
Let E, be the projection operator in D(S) (or in L?(S)) onto H,:

(B:0) (%) = (R(E)p, 8:) [ (02 92),

Let D.(S), e = 0,1, denote the subspace of functions ¢ € D(S) of parity e: p(—s) = (—1)°¢(s). Let
o € C . The representation T . of G acts on D,(S) in the following way:

= 59 4
(Ta,e(g) lp)(S) _w(lsyl) |sg|”-
It is continuous and indefinitely differentiable. The restriction of T, . to K is the representation R. of K
by rotations in D.(S). It is the direct sum of representations p, with z from the lattice Z° : |+ m =e¢.
Here and further the sign = denotes the congruence modulo 2.
Denote '
c*=2-n-—o.

The form (1.2) is invariant with respect to the pair T, ., T5+ ¢, so that

(Toe@)9,9) = (¥ Tores71)0). (1.4)
Let us denote by Lo the following element of the Lie algebra g of G:
0 0 1
i 0 0 0
1 0 0
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Since Lo centralizes K, the operator T, (Lg) preserves the family of spherical functions v,. Namely, it
carries v, to a linear combination of four ”neighboring” functions:

4

TG',E(LD)‘;bz = Z Tl'(z) ﬂ"(ﬂ';z) 11{)2-{-8.) (15)

i=1

where 7;(z) are some positive functions, e; are the following four vectors on the plane: e; = (1,1), e3 =
(1,-1), e3 = (—1,1), e4 = (=1, —1), and fi(c; z) are the following functions of z € R ?:

Bi(o;z)=a—1—m, Pa(o;z)=c—1l4+m+q—2,

Ba(o;z)=c+l—m+p—2, pa(o;z)=c+1l+m+n—4.

The line Bi(¢; z) = 0 on the plane z is called a barrier for 7, . if it meets Z¢. If the line 8; = 0 is barrier,
then V, . ; denote the sum of subspaces H,, z € Z¢, for which §;(c;z) > 0.

The subspaces V; . ; are invariant with respect to G in the representation 7, .. Any invariant subspace
is the sum of intersections of spaces V, . ;. Therefore, if ¢ is not integer, then T, . is irreducible.

Let Ay be the following element of the universal enveloping algebra of g (it differs from the Casimir
element by a factor only):

A=Y Nk (E,-,— g A.—)\,-Ej;)g,
i<j

E;; being the standard matrix basis. The representation T, . carries it to a scalar operator:
Toslly) =0"0E. (1.6)
We shall use the following notation for a character of R *:

e = |z|*sgnz = 2} +(-1)°z, (AeC,e=0,1).

Define an operator Ay, on D.(S):

(Ane0) @ = [ (=123 o5 (L7)

The integral converges absolutely for Ree < 3 — n and can be extended to other ¢ by analyticity to a
meromorphic function. The operator A, . is a continuous operator in D,(S).
The operator A, . intertwines the representations 7, . and Ty .:

Ta",er,E = Acr,e Ta,r: .

On every subspace H, it is a scalar operator:

Ase p=a(o,6;2)p, p€ H,, (1.8)

where

r3—n- o‘)I‘(;"Tﬂ — o*)
[T} T - 46i(:2)

a(o,€;2) = 2°H" x5 (-1)™ (1.9)

By (1.8) and (1.9) we have
Age e A e =v(0,€)E, (1.10)

where

1(0,€) = 2" 7" (o + 1)I (0" + 1)1‘(2 = il a)r(2 5 ”l— o)

. [(ﬁ-l)‘cos%i — cos(o + %)w] : [(—1)""”(:03% — cos(o + g)w] 7

Thus if ¢ is not integer, then the representations Tj . and T;. . are equivalent. In reducible case there
is a partial equivalence.
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The operator A, . interacts with the form (1.2) as follows:
(A0ev0) = (¥, 45.0). (1.11)

Let us extend the representation 75 . to the space 'D;(S) of distributions on S of parity € — by formula
(1.4): now in (1.4) ¢ is a distribution in D,(S), ¢ is a function in D,(S), and (¥, ¢) means the value of
a distribution % at a function ¢. Indeed, it is an extension by attaching to a function ¥ € D.(S) the
functional ¢ — (1, %) in D.(S) by means of (1.2). Similarly we can extend the operator A, to D,(S) -
by (1.11).

In §5 we shall need the following operator Ag;, r€N ,in D.,.(5):

(A520) @) = [ (=37 <w,@>" o, (1.12)

see (1.1), so that for r = 0 it is (1.7). The operator AE,'Q intertwines the representation R.y, of K with

itself (but for » > 0 it is not intertwining operator for ). Therefore the spaces H, are eigenspaces of it:
AD) p=a,(0,652) o, pEH, z2€2F. (1.13)

To write explicit expressions of a,, we need to make some preparations. We shall use the ” generalized
powers”
a™ =ag(a—1)..(a—m+1), a™=a(a+1)..(a+m-1).

Introduce the following polynomials S;;(!) in [ of degree r:

(k)

Seil) =3 25-3(25 — k)!(k — j)!

k

[(r=%)

(the summation is taken over k satisfying inequalities j < k < 2j, k < 7). Notice that these polynomials
satisfy the following recurrence relation:

Spi = Sp=1,j-1+ (I+ 1425 — T)Sr_l'j.

Theorem 1.1. The eigenvalues a,(c,¢; z) of the operator As,rz are given by the formulae:
n '3—n-o)
a.(o,6;2) = 27" x3 (-1)™ i
S 1) P(—1B3(c—r;2))T(— 3Pa(ec —r;2))T(1+5)
4y ! . : 1 e A
'("JE) ey F(l +5P3(0 —ri2), 1+ 5Pa(o —r;2) 1+ 55 ) (1.14)
I'3—n-o)

= 274t g3 ()™ .

r'(- %ﬁl(o:— r;2))T(— 320 —r;2))

L2 —o+r—))

I’Z:OZJSH(I)I‘(—- %ﬂ3(0’—1‘+ 2j;z))F(_ %ﬂ4(0- —7r +2],Z)) (115)

(formula (1.14) is written for p > 2, for p = 2 one has to replace by |l|).

Proof. To prove (1.14), we use the method from [9]. For definiteness, assume p > 2, ¢ > 2. Putting
in (1.13) ¢ = %, and taking it at s = s° (recall ¥,(s°) = 1), we obtain by (1.12):

ar(0,€;2) =
1 1 = 2
= Qp-1Q4-1 j ] (51— 5n)” ST (51)90) (s0) - (1 = 83)"F (1 — 52) T dsdsn.
=1 J=1
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Denote = (p — 2)/2, v = (¢ — 2)/2 and compute separately the integrals
dy = Qp_19,_ 1] / z -y r¢(p)( — 22)P=3)/2y0) () (1 — y?)\1~ N2 4zdy.
Let us pass to Fourier transforms. The Fourier transform of the function z3 is (see [5] p.196):
T(t) = iT(A + 1){e"*"/2t;"‘1 - e-"""”t:"—l}. (1.16)

Denote for brevity p = (p — 2)/2,v = (¢ — 2)/2. The Fourier transforms of the functions (1 —
z2)P=3/2 %P (z) and (1 — y?)Y¢~ D240 (y) are expressed by means of Bessel functions (see [6] 7.321)
and are equal to

A(t) = i'?"ﬁl‘(p + 1/2) [t + (1)t (1), (1.17)

B(t) = i"2'v/aT (v + 1/2) (13 + (1™ em(It). (1.18)
respectively. Therefore

dy = 5 0p-ifs(=i) [ TOAD 0B

We can rewrite it as follows:

AT
" ——Q,,_lﬂq i ( da) L / =TT () A(—at) B(t)dt

Introducing here (1.16), (1.17) and (1.18) we obtain
dy = @myprotir+tmiip () 4 1) [ 55 (<1)f - e (1) |-

d 4 == —A=p=—v-—r—
.(5) L *‘jﬂ e L i(at) gy 4m(t)dt.

The last integral is computed with the help of formula [6] 6.574(1) and we finally obtain
L r(A+1)
d. = 21— ranl2(_1)ym !
i =D T(A—l+m+q+r)/2)T(A=1-m+r+2)/2)T(1+p/2)
d\r 1af—A+l+m—r =A+l—-m—q+2-1r P ,
(%) a1 F( 2 ’ 2 ,1+-2-,a).
Clearly d_ = (=1)"#™+"d, so that for z € Z°*" we have a,(0,€;2) = dy +(=1)*d— = 2dy with A = o".

It proves (1.14).
Now we make the differentiation in (1.14). We need some formulae from differential calculus (see, for

example, [6] 0.433(1), 0.432(1), 0.431(1)):

- r—1 ] e
Ga) =S e (&)

j=0
ftin B i
(EE) =2 dyj 2= (@) , (1.19)
where (r—14j)!
erg = (1Y 2ij!(r—1ij)!; (1.20)
r(29) r!

drj = —— = = .
T it T 205 (r — 25)!
Applying (1.19) to the product o' F(a,b; c; %) where F is the hypergeometric function, we obtain

(%)ra'F(a, b; c; a?)

I(c)(1 —a)T'(1 —-b) oi [(c—a—b—j) r (-
[(c—a)l'(ec—b) Z I(l—a-jI1—-b-3j) Zk:()dk.k—gl“ k)

The last sum is precisely S ({). O
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§2. EIGENFUNCTIONS OF THE LAPLACE-BELTRAMI OPERATOR

The hyperboloid X : [z,2] = 1 in R" is a homogeneous space G/H, the stabilizer H of the point
2% = (0,...,0,1) is isomorphic SOy (p, ¢ — 1). Let us introduce on X the ”polar” coordinates t,s (t € R ,
5 € S) as follows: z = (sht - u,cht - v), s = (u,v), see (1.1). In these coordinates the operator Laplace-
Beltrami A is:

ik 5] Ay A,
A=——ro — — 1)ctht — 1tht| — — — 4+ —.
gz ~ [(p— Detht + (¢ — 1)tht] = sh’t ' cht
Notice that .
S =2 t —_— 5
cht (u,v) s ( +00), (2 1)

so that S can be regarded as a boundary of X (in sense of Karpelevich).
Let U denote the representation of G on C*(X) by translations:

(V@)f) (@) = f(=z).

It is continuous and indefinitely differentiable. It generates representations of Lie algebra of G and its
universal enveloping algebra which we denote by the same symbol U. The element A is mapped just to
A

U(Ag) = A. (2.2)

Foro € C,e=0,1, denote by H, . the subspace of C*°(X) consisting of functions f(z) satisfying
Af=d"cf, f(-z)=(-1)f(z). (2.3)

It is closed. Clearly H, . = H,e . Let U, denote the restriction of U to H, .

Let us separate the variables ¢ and s in (2.3): set f(t,s) = R(t)¢(s). Then the function ¢ on S has
to belong to a subspace H,, z = (I,m), see §1, and the function R(t) on the real line must satisfy the
equation

d*R

_d°R l+p—-2) m(m+q-—
dt?

sh’t ch?t

— [(p — Dctht + (g — 1)tht] i—f + {I( 2) }R =o"oR. (2.4)

Since f(—t,s) = f(—t,u,v) = f(t,—u,v) = (=1)'f(¢,u,v) = (=1)' f(¢, s), the function R has parity I:
R(-t) = (-1)'R(2). (2.5)

and ¢ belongs to D,(S), so that z € Z*.

For simplicity, we assume p > 2 (then [ € N ) in the main part of this section, and in the end of it we
indicate the differences for p = 2.

Let us make the change of the variable and of the function in (2.4):

th’ =y, R = (cht)(tht)'F,

then for F' we obtain the hypergeometric equation with parameters (—o + [+ m)/2, (=0 +1—m — ¢+
2)/2, 1+ p/2. Notice that the first two parameters are precisely —(1/2)8;(0; z) and —(1/2)B2(c; 2).
Thus the function ,

—oc+1l+m ~a+i-m—q+2;[+£;th2t

o 2 2 ) - £29)

R(e, %) = (cht)” (tht)' F

= (cht)° (tht)' F( - %,5‘1(0, 2), —%52(0, 2); 1+ g; th2t),

is a solution of (2.4) satisfying (2.5). It is invariant with respect to m + 2 — ¢ —m and o — o* (the last
statement follows from [4] 2.1(23)). ,
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Theorem 2.1. For any function f € H, . there exist functions p, from H,,z € Z*, such that

f(t,8) = Y R(o,z;t)ps(s). (2.7)

ZEZ"

This series converges with respect to the topology of the space C*°(X). In particular, we can differentiate
equation (2.7) with respect to t and apply the operators A, and A, as many times as desired.

The theorem is proved similarly to the corresponding theorem in [1].
Let us describe invariant subspaces in H,.. Let Hy.; (i = 1,2,3,4) denote the subspace in H, .
consisting of the functions f for which the functions ¢, from (2.7) are contained in V; . i, see §1.

Theorem 2.2. (see [15], [13]). The subspaces Hy e i and Hoe ¢, @ = 1,2, are closed G-invariant sub-
spaces in M, ¢, and any such a subspace in H, . is a sum of intersecions of subspaces above. In particular,
if o is not integer, then U, . Is irreducible.

For proof, it suffices to observe how the operator U(Lg) acts on functions h(o,z;z) =
R(o, z;t)(s), z € Z°. For brevity, denote them h,. Namely, as we shall see in §4,

4
U(Lﬂ)hz = Z )\;(O',Z) hete:s (28)
i=1
i 80, )Bi(o",2), i=1,2
il2)pilo, 2 io*lz: t=1,4
Aio,z) = g 2.
(0:) { 8(2), i=34, (2.9)
and §;(z) are some non-zero numbers. [J
Let us decompose R(c, z;t) in series in powers of n = (cht)~2. Firstly we have:
R(o, z;t) = g(o, z)(cht)"W (o, 2;n) + g(c”, z)(cht)? W (a*, 2; 1), (2.10)
where g ; g
g e I -0 + m —oc+i—m-—¢q AR
W (e, z; 1) = (tht) F( 5 ; 2 i~ o‘,n), (2.11)
I'(o +(n—2)/2)T(1 +p/2)
= : 212
9.2 = Ko T T=-m+ )@ T+ m+n—2)]2) i)

This formulae are obtained from (2.6) with the help of the transform [4] 2.10(1). Expanding for ¢ > 0
the first factor (tht)' = (1—15)"? in the right hand side of (2.11) in the binomial series, we can presented
W as the sum of a series of powers of n:

V.V(a', zam) = Z wy (o, 2)n", (2.13)
r=0

Further, expand W in a series of powers of 1 — & with £ = tht and denote this sum by V(e z;§):

V(e,z;€) = ZU,.(O',Z)(l =g (2.14)

r=0

(Unfortunately, for p > 1 the function V' is not expressed in terms of the hypergeometric function of
(1—=£)/2). For t > 0 we have

V(o,2z:€)=W(o,zm), n=1-¢, (2.15)
so that we can rewrite (2.10) for ¢ > 0 in the following way
R(0, z:1) = 9(0, 2)(cht)? V(5, 2;€) + 9(0" , 2)(cht)” V(0" ;€), (2.16)
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The coefficients v, and w, of series (2.13) and (2.14) are linked by formulae

r—1

s e ﬁzl:](—l)jc,j(r— Plsilos i), 2.17)
i=
[r/2] o
ve(0,2) = lg(—l)*?'"”‘( b )w,_k(a,z), (2.18)
where c,; are defined by (1.20). &
Let us write v, and w, explicitly. Assume
Reo >r — (n—2)/2, (2.19)

so that Re(c* — ) < —2r and we have from (2.16):
d\* ) e | d\" " .
(E) V(r:r,z:,{)[f=1 = m(dﬁ) (cht)™? R(o, 2; 1)
Remembering (2.6), we obtain:
TR | d\r ! —oc+l4+m —oc+l—-—m—-q+2 D .a
r(0y2) = (1) =—| 5= e 2 ) ; Pt 0
Y\e8) = (=1 r! g(o, 2) (d{) If—'IE ( 2 9 I+ 9 £ )
Comparing this with formulae (1.14) and (1.9), we obtain:
o\ar(c* +r,e+r,z)
r ] — _1 i . "
w(o9) = -1y (7) 2D 3 (2.20)
By analyticity in o we can take off the restriction (2.19), so that (2.20) holds for all & for which the right

hand side of (2.20) makes sense.
Substituting into (2.20) explicit expressions (1.15), (1.9) we obtain

E=1 1

p ey [(1/2)B1 (9, 2)]9[(1/2)B2(e, 2)]9)
v:(o,z) = (—1)"= ¥ Sps(l - ] ;
Y e s (221)
Similarly
1 (7 (1 =D [(1/2)81(0, DID[1/DBo(o, )9
we(o,z) = (—1) — = . : .22
= T!j=0 (-7)(2) (U+(n—4)/2)(1) ]

Notice that formulae (2.21) and (2.22) are connected by means of (2.17) and (2.18).
Lemma 2.3. The coefficients v, (0, z) and w, (0, z) are polynomialsin A\, = I(2—p—1), Ay = m(2—q—m)
of degree r in Ay and )\, separately.

The lemma follows from that (2.11) is invariant with respect tom 2 —g—mand [+—2—p—1 (the
latter statement follows from [4] 2.1(23)).
Let us normalize these polynomials so that the highest coefficient with respect to A, (i.e. the coefficient

of A}) is equal to 1. We denote these normalized polynomials by 3,(0; A1, Ag) and '3;,.(5; A1, Az), so that

y 1 0
v (0o, 2) =.(-1) mv,(a,z\l,/\g), (2.23)
w,(0,2) = (=1)" : wr (05 A1, M) (2.24)

2%rrl(o + 232)()

. .. 0 0
Let us write some first polynomials v,, w,:

0 0
‘ngwg:l,

81 :1%1 =-Mi+X+o(c+qg—2),
Vg = [= X\ +X+o(c+g-2)[-M+d+(c-1)(c+q—3)+p— 1] +2(20 +n — 4)A,,
'3}2 = [—-)q] +A2+0'(0'+q—2)][—'/\1+)\2+(0‘—2)(U+q—'4)] +2(20’+ﬂ—4)A1,

Let us consider the case p = 2. Then [ ranges Z and we have to replace { by |I| in formulae (2.6),
(2.12), (2.14), (2.22). In formula (2.9) it is necessary to make an exception for [ = 0, in which case we
have

6:'(2) ﬁi(o’yz) ,@,‘(O“,Z), i= 1:21
Aile,z) = g )
6.‘(2), ,61'_2(0',2) ﬂi—Z(o‘ 12)1 1= 3:4:
formulae (2.11), (2.21), (2.22) remain valid.
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§3. H-INVARIANTS

We refer to [10]. Let us show elements invariant under H in representations of G described in §1.
These invariants belong to D (S) or to its subfactors.

Theorem 3.1. The space of H-invariant elements from D.(S) in the representation T, . is one-dimensi-
onal except the case ¢ = 2,0 = —m—1, m € N, m = €+ 1, in which case this space is two-dimensional.
For the generic case, a basis is the distribution

Bsels)= [2%8]% = 87",

or its first Laurent coefficient when it has a pole. In the exceptional case a basis consists, for example, of
s7™= 1 and 6(™)(sp)sgn(sn—1)-

The operator A, . transfers 85 to 0qe ¢ with a factor:
Ageloe = j(a, 5)60‘.53 (31)

where 9
, [, = - e q\_ . 4qm
jlo,e) =277 T'(o+ l)I‘(—2 0‘) [( 1) cos(o-+ 2)7r cos - ] (3.2)

By (3.1) we have another expression for the factor ¥ from (1.10):
+(0,¢) = i(@,)i(0" ©). (33)

§4. POISSON TRANSFORM

According to [11] the Poisson transform P, . associated with the H -invariant 8, . is defined as follows

(Poe) (@)= fs (T (g™, ) (s)i(5)ds = fs (2, 87" 0(8)ds, (4.1)

where z = z%. It is a linear continuous operator from D¢(S) to C*(X). (The continuity is proved
similarly to [14] pp. 113-114). It intertwines Ty- . with U:

U(g) Po,a = Pa,: T,-,g(g), g€eQG. (42)

Hence (see (1.6) and (2.2)):
Ao Pse=0"0Fg;.

The function (Ps,e¢)(z) has parity e:

(P"'E‘P)("’) =(-1F (Pa,sw) (z),

so that the image of P, is contained in Hy.. The Poisson transform interacts with the operator A, .

as follows
Pa,s Aa,: = j(a, E)Pd'.é‘- (43)

As a function of &, P, . is a meromorphic function with poles at points ¢ = —1 — e — 2k, k € N . So
firstly we consider o # —1 —¢ — 2k.

Theorem 4.2. Let ¢ € D.(S). The decomposition (2.7) for the function Poep € Ho,e have the form:
(P,,E‘,o) (t,s)= 3 x(0,2) R(o,21) () (), (4.4)
zE€EZ*

where E, are projection operators from §1, the numbers x(o, z) - let us call them the Poisson coefficients
— are given for p > 2 by the formula:

I'(e+1)
T+ p/2)((c — 1 —m+2)/2)T((c — 1 +m +4q)/2)’

x(a,2) = (-1)! 22=° /2 (4.5)
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for p = 2 one has to replace [ by |l|. The radial factor from (4.4), i.e. the function
¥(0, z;t) = x(0, 2) R(Uaz;t)a (4.6)
is expressed in the terms of W, V, see (2.11), (2.15), as follows

(7, 2t) = (~1)°{ (cht) a(0*, 2)W(a, 1) + (ch)” j(o, )W (0", 24 n}= (4.7)

= (-—~1)‘{(cht)"a(a", z)V(e,z;€) + (cht)".j(a', eyV(e", z;{)}, (4.8)
where a and j are given by formulae (1.9) and (3.2) respectively.

Proof. Expand the function P, ¢ € H, . into the series (2.7). Elements k € K preserve the coordinate
t. Therefore, by (4.2) with ¢ = k, we obtain that for every weight z € Z° the map ¢ — ¢, of the space
D.(S) into the space H, commutes with rotations k € K. Since the representations p, (see §1) are
irreducible and pairwise inequivalent, the map ¢ — ¢, differs from E, by the factor only — we denote its
by x(o, z), — so that ¢, = x(e, z) E.¢, and we obtain the decomposition (4.4).

Now let us take ¢ € H,, z € Z°. Then ¢ = E, ¢, and series (4.4) is reduced to one term only:

(Poct) (t,5) = (o, 1) (), (4.9)
where the function ¥(a, z;t) is defined by (4.6). Introduce (2.10) in (4.6), we obtain:
(o, z;1) = x(o, 2){ (cht) 9o, 2)W (2, 53m) + (cht)”" (0", 2)W(0*, z3m) }. (4.10)
Assume that Reo > (2 — n)/2. Then Rec” < (2 —n)/2, and by (4.10) and (2.11) we have
¥(a, z;t) ~ (cht)’x(o,2)g(0,2) (t — +0). (4.11)
On the other hand, the left hand side of (4.9) behaves as
(eht)* (1) [ (= [53) ™" l@)4F = (cht)(~1)"a(o"; 2)¢()
when t — 400 (we used (2.1), (1.7), (1.8)), so that by (4.9) we have:
¥(o, z;t) ~ (cht)?(=1)%a(c”;2) (t — +o0). (4.12)
Comparing (4.11) and (4.12) we obtain
(=1)a(e*, 2) = x(2, 2)9(a, 2). (4.13)
Now by analyticity in o we may take off the restriction Rec > (2 — n)/2. Substituting expressions (1.9)
of a and (2.12) of g into (4.13) we obtain (4.5).
Let us apply (4.3) to ¢ € H;, z € Z° and use (1.8) and (4.10). Comparing coefficients, we obtain
a(o, 2)x(o, z) = j(o,€)x(c", 2). (4.14)
From (4.13) and (4.14) we find that
x(o,2)9(0”, 2) = (=1)"j(o; ).
Together with (4.13) it proves (4.7) and (4.8). O

Formula (4.6) together with (4.5) can be proved by a direct computation. Integral representations
obtained in this way will be used in §5. Namely, by (4.9) and (4.1) we have

¥(o, 2;t) = (cht)"Qp_lﬂq_l‘/:1.[_1(—fw+y)a’s¢l($)¢m(y) :
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(1 =225 (1 - ?) T dedy, (4.15)

where = tht. As in §1, using Fourier transform, we obtain
1 (e ]
W(o,231) = (cht)" Qo101 f [T() + (—1)*T(~t)| A(et) B(~t)dt,
—00

where T', A, B are given by (1.16), (1.17), (1.18). So
W(o, 2;t) = (cht)?2H ¥ 2gptrtl jimii e, 4 1),

iew

(e = (~1yre ' )gn /ﬂm U (60 Ty (1)t (4.16)

The last integral is computed with the help of formula [6] 6.574(1), and we obtain (4.6) with x given by
(4.5).

Now let us prove (2.8). According to (4.2) the operator U(Lo) acts on the functions ¥, = Py, in
the same way as the operator T5+ (Lo) acts on the functions 1, (see (1.5)), i.e.

U(Lo)¥: =Y %i(2)Bi(0*, 2) W, pe,. (4.17)

i=1
By (4.9) and (4.6) we have W, = (o, z)h,. Substituting this into (4.17) we obtain
: x(o,z + &)
UL hl: ilZ io’*lz‘,—‘hz ]
( 0) 27( )ﬁ( ) X(O',Z) =+

i=1
which is (2.8).

§5. ASYMPTOTIC BEHAVIOR OF THE POISSON TRANSFORM

First we expand the Poisson transform into series of powers of 1 — tht for the K-finite functions
¢ € D(S), ie. for linear combinations of functions from H,. In this case the expansion is given by
absolutely convergent series.

For o € C, r € N, define the differential operators Lyyr, My, on S as follows. For r > 0 we set

s o
Lo.r = vr(‘:r 7a ST A2)y Ma,r = "-Ur((7 181, A2)|
where g,., 3.:,. are the polynomials from §2, see (2.23), (2.24), A;, A, are the Laplace-Beltrami operators

on Si, Sz, see §1; and for r = 0 we set loe=1, M., =1.

Theorem 5.1. Let o be generic: o ¢ (n/2)+Z, 0 ¢ —1—e—2N . For any K-finite function v € D(S)
its Poisson transform (P,,Ich (t,s) has the following expansion in series of powers of 1 — tht:

(Pre) (4:6) = ()7 32 (0,6) (A2410) )1 = iy +

r=0
+(cht)” Y yr(9,€) (Loyrsp) (5)(1 — th)’, (5.1)
r=0
where Agrl is the operator from §1,
z,(,¢) = (~1)*+ (a) '

1

w(:6) = (D500, gy =
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= (_1)r21_a-r$77("_4)f2f(0' B 1)1"(?—_2_—” —0— r) [cos(ur 2 %)w - cos(s + g—)a'r] .

Both series in (5.1) converge absolutely.

Proof. It suffices to consider the case when ¢ € H,, z € Z°. Then we have (4.9) and (4.8). Expand
both functions V in (4.8) into series (2.14) of powers of 1 — £. Then

Yo, 2;t) =

oo o0

= (cht)” Y (~1)fa(c”, 2)vr(0, 2)(1 = &) + (cht)”" Y _(=1)* (o, €)vr (0™, 2)(1 ~ €)".

r=0 r=0

Now applying (2.20) to the first series and (2.23) to the second series, we obtain

¥(c,z;t) = (cht)? Ez,(a, e)ar(c* +re+r;2)(1—&) +
r=0

o0
» 0 * r
+(cht)” D ye(o,€)vr(07; A1, A2)(1 = €)',
r=0
whence (5.1) follows at once. The absolute convergence follows from the absolute convergence of the
hypergeometric series (2.14) O
Equation (4.3) gives two relations for operators occurring in (5.1):

= z.(0%,€) ,(r)
LoyrAoe = J(U:E)WAa-i-r,Hr: (5.2)
AD A= e (5.3)
o +re4r ¥ ] 1!,..(0', 6) 3T
Denote by w, () the coefficient in (5.2) (it does not depend on ¢):
(@) = (0,2 _ oo g m— 2 (04 2) (5.4)
r 1 yr (O',E) 2 .

Notice that these two formulae (5.2), (5.3) are connected by means of (1.10), namely, multiplying (5.2)
by A, . from the right and using (1.10), (3.3) and replacing ¢ by o*, we obtain (5.3).
Let us take an arbitrary function ¢ € D.(S) (not necessarily K-finite) and decompose it in a series of

its Fourier components:
w = Z Ez{p.

ZEZ*

By the continuity of the Poisson transform we obtain

Pa,s(P = Z Po,c(EzSO)-
zZEZ*

Apply to each term here formulae (4.9) and (4.8), we represent Py ¢ as a sum:
(P,,'gt,a) (t,8) = (cht)® (P;:e(p) (&,8) + (cht)". (P;,E <p) (&,9),

where £ = tht and the operators Pcf‘ are defined in the following way:

(Pte)€s) = 3 (~1)fa(e", )V (e, 26) (Eeg) (),

2€Z*°

(Prep)€5) = 3 (-1Fi(0, )V (0", 5:6)(E=0) o).

ZEZ*

For arbitrary function ¢ we can state only that the (5.1) has to be understood as an asymptotic
expansion. :
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Theorem 5.2. Let o be generic: o ¢ (n/2)+Z, o ¢ —1 — e — N . For arbitrary function ¢ € D.(S)
its Poisson transform has the following asymptotic expansion for t — +00:

(Poc) (t,5) ~ (cht)” ﬁ 70(0,€) (AT 40 0) (5)(1 = thit)" +

+(cht)”" 3w (o,¢) (L,,,,-(,a) (s)(1 — tht)". (5.5)

r=0
The asymptotic equality (5.5) is understood as an asymptotic expansion of both functions (Pf,he zp) (&)

which means the following — for example, for (P;f,s (p) : for every N € N there exists a constant C such

that
N

|(P20) €9 = 320000 (A4 as0) )0 - €

r=0

for all £ € [0,&], s € S, & is some number from (0, 1).

sc=gr,

The proof of Theorem 5.2 goes similarly to the case p = 1, see [1]. Here we restrict ourselves to
indicating some steps of the proof, cf [1].
Define the function ®(e, z; &) of £ by the equation:

¥(o, z;t) = (cht)’ ®(0, z;§),

where z € Z°, £ = tht and the function ¥ is given by (4.6) (or (4.7), (4.8)). Let us take in (4.9) ¢ = ¢, and
5 = s then by definition (4.1) of the Poisson transform we obtain for ® an integral representation, which
is (4.15) where the factor (cht)” has to be omitted. This integral converges absolutely for Rec > —1/2
and can be extended on the g-plane as a meromorphic function. The function ® has parity ¢ + m = [.
Denote

X(o;2;€) = a(a”, 2)V (0o, 2; £),

where a and V' are given by formulae (1.9) and (2.14) respectively.
Then we express X in terms of ®:

X(o;2;€) = (-1)° (,u(cr, 2)®(o, z;€) + p(o, 2)®(o, z; E)) : (5.6)
where z = (I':m), T= 2—p—1,

sin (ﬁ3(0‘, z)ﬂ'/?) -sin (,64(0', z)vr/?) |
sin(o + (n — 2)/2)7 -sin(l + p/2)7’

wo,z) =

for even p one has to evaluate a undetermined form in (5.6). (Formula (5.6) is obtained from (2.11) by
means of [4] 2.10(1)).

For Reo > 0 the function ®(e, z;£) in (5.6) is estimated by means of integral representation (4.15),
the function ®(o, z;£) in (5.6) is estimated by means of integral representation (4.16), where one has to
replace [ by Tand o by ¢*. Thus, for Rec > 0 the function X is estimated by some constant independent
of z. :

Furhter, we have the following recursions for X:

X(oi,m;€) = X(oil,m = 2 + 2K (0 + 131 m = 156),
dX i, m;€) = { X(e—-11—-1,mé)+cX(oc—1;14+1,m;€)
T3 (o1, m; _21+p—26 o—1; ,m,; oX(o—1; ,ME).

Applying these formulae, we can estimate X successively for all o (first for Ree > —1, next for
—2 < Reo € —1 etc.). This gives us desired estimates to prove (5.5). O
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We can include ¢ € —1 — £ — 2N (where 6, . has poles) dividing s by a suitable function of o,

say, I‘((a + 1+ 5)/2). Then we have to divide by the same function both Py and z.(0,¢), yr(0,€) in

Theorems 5.1 and 5.2.

Similarly we consider the expansions of the Poisson transform in series (absolutely convergent for K-
finite functions and asymptotic for arbitrary functions) of powers of n = (cht)~2 and ¢ = —e~%. Then
we replace operators AE,'.L,H, and Lo, by operators 27" Bse,» and 27"M, . for n and operators Cor
and K, , for ¢, where

1 r—1 o .
e == Mo A e = N e )
1€y w,(a*)M W i€ Jz% (0 B I)D] o r—~§, e tr—17

r

k= r k
Ca,,. = (,,_l)r k2 +k (k)AEr*')k,e+k’
k=0

r

SR 1=k T _ o\[r=k] n
Ko r k=ﬂ( 1) (k)(a'+k+n. 2) (a+2)La,k

with w,, c; defined by formulae (5.4), (1.20). These pairs of operators are linked by relations similar to
(5.2),(5.3), for example,
*
Ma,rAa',s = j(o', E)MBa‘,s,m
yr(0,€)

: o*, €
Ba,e,rAa,: = ](U; E)yxr_((;?))Ma‘,r-
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