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Representations of clans and homogeneous cones
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We present a canonical way to construct an injective representation of a given clan (compact
normal left symmetric algebra), which gives rise to the realization of a homogeneous cone
in the space of real symmetric matrices by Rothaus [5] and Xu [8]
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� 1. Introduction

Since Vinberg [7] established the correspondence between homogeneous cones
and clans (compact normal left symmetric algebra) with unit elements, the clans
are convenient tools for the study of geometry and analysis on the homogeneous
cones. The correspondence is in a sense similar to the one between Lie groups
and Lie algebras, and also the one between symmetric cones and Euclidean Jordan
algebras. In this article, we shall consider representations of clans and their relations
to representations of homogeneous cones in the sense of Rothaus [5]. After some
preliminaries in � 2, we see in � 3 that a representation of a clan is at the same time
a representation of a homogeneous cone(Proposition 1), while every representation
of a homogeneous cone is obtained as a composition of a representation of the
associated clan with some linear transformations (Theorem 2). In � 4, we construct
representations R1, . . . , Rr of a given clan V in a canonical way (Theorem 3). These
Rk already appeared in [4, Section 4], and we refer some computational arguments
about them to [4]. Taking the direct sum of R1, . . . , Rr, we have an injective
representation R of the clan V (Theorem 4). Then R gives a linear imbedding
of the corresponding homogeneous cone into the space of real symmetric matrices,
which coincides with the results by Rothaus [5] and Xu [8] eventually.

� 2. Correspondence between clans and homogeneous cones

Let V be a �nite dimensional real vector space, and Ω ⊂ V an open convex
cone containing no line. We assume that Ω is homogeneous, that is, the group
GL(Ω) := {g ∈ GL(V ) ; gΩ = Ω} acts on Ω transitively. By [7, Chapter 1, Theorem
1], there exists a connected split solvable Lie subgroup H ⊂ GL(Ω) which acts on Ω
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simply transitively. Such H is unique up to conjugacy in GL(Ω). Let h ⊂ End(V ) be
the Lie algebra of H, and �x a point E in Ω. Then we have the linear isomorphism
h 3 L 7→ L · E ∈ V obtained by di�erentiating the orbit map H 3 h 7→ h · E ∈ Ω.
Thus, for an element x ∈ V , there exists a unique Lx ∈ h for which Lx · E = x.
We de�ne a bilinear multiplication 4 on V by x4y := Lx · y ∈ V , x, y ∈ V . Then
the algebra (V,4) is a clan (compact normal left symmetric algebra) with a unit
element E. Namely, the following axioms are satis�ed:

(C1) Putting [x4y4z] := x4(y4z)−(x4y)4z for x, y, z ∈ V , one has [x4y4z] =
[y4x4z] (left symmetry).

(C2) The bilinear form (x|y) := trLx4y (x, y ∈ V ) de�nes a positive de�nite inner
product on V (compactness).

(C3) For each x ∈ V , the linear operator Lx on V has only real eigenvalues
(normality).

In terms of the clan structure (V,4), the cone Ω is described as Ω = {(expLx) ·E ;
x ∈ V }. Actually, if we start from any clan (V,4) with a unit element E ∈ V , we
obtain a homogeneous cone in V this way, and the correspondence between the class
of homogeneous cones and the class of clans with unit elements is one-to-one up to
isomorphisms ([7, Chapter 2, Theorem 2]).

Let us give an example of a homogeneous cone. We denote by Sym(m,R) the
space of real symmetric matrices of size m, and by S+

m the subset of Sym(m,R)
consisting of positive de�nite elements. Then S+

m is a homogeneous cone, on which
the group GL(m,R) acts transitively by g · x := gx tg, x ∈ S+

m, g ∈ GL(m,R)). Let
Hm ⊂ GL(m,R) be the group of lower triangular matrices with positive diagonals.
Then the Lie algebra hm of Hm is the vector space of lower triangular matrices. For
x ∈ Sym(m,R), we de�ne x ∈ hm by

(x)ij :=


0 (i < j),

xii/2 (i = j),

xij (i > j),

and set x := tx. We choose the unit matrix Im as the element E. Then the clan
structure on Sym(m,R) associated to the cone S+

m is given by

x4y = x y + y x, x, y ∈ Sym(r,R).

By a representation of a clan (V,4), we mean an algebra homomorphism from
V to Sym(m,R) with some m, that is, a linear map φ : V → Sym(m,R) with the
property

φ(x4y) = φ(x)φ(y) + φ(y)φ(x) (x, y ∈ V ). (2.1)

We require also φ(E) = Im if (V,4) has a unit element E, which we always assume
unless otherwise stated in what follows.
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� 3. Representations of homogeneous cones

We recall the notion of representation of a homogeneous cone introduced by
Rothaus [5]. Let Ω be a homogeneous cone in a real vector space V . A linear map
φ : V → Sym(m,R) is said to be a representation of the homogeneous cone Ω if the
following two conditions are satis�ed:

(R1) φ(Ω) ⊂ S+
m;

(R2) the group Gφ(Ω) consisting of g ∈ GL(Ω) for which there exist g̃ ∈ GL(m,R),
such that φ(g · y) = g̃ φ(y) tg̃ for all y ∈ V , acts on Ω transitively.

Proposition 1 Let Ω ⊂ V be a homogeneous cone, and (V,4) the associated clan.
If a linear map φ : V → Sym(m,R) is a representation of the clan (V,4), then φ is
a representation of the homogeneous cone Ω.

Proof. We see from the relation (1) that

φ((expLx) · y) =
(

exp φ(x)
)
φ(y)

(
expφ(x)

)
, x, y ∈ V. (3.2)

Since h = {Lx;x ∈ V } is split solvable, exp : h→ H is a di�eomorphism. Thus, for
any h ∈ H, there exists x ∈ V for which h = expLx. Putting h̃ := expφ(x) ∈ Hm,

we have φ(h · y) = h̃ φ(y) th̃ (y ∈ V ), so that h ∈ Gφ. Thus Gφ contains H, which
acts on Ω transitively. On the other hand, we have φ(h · E) = h̃ th̃ ∈ S+

m. Therefore
φ(Ω) ⊂ S+

m and Proposition 1 is veri�ed. �

Proposition 1 means that a representation of clan is automatically a
representation of homogeneous cone. On the contrary, a representation of
homogeneous cone is not necessarily a representation of clan in general. All
representations of a homogeneous cone Ω are obtained from representations of the
associated clans by taking compositions with linear automorphisms on the cones Ω
and S+

m.

Theorem 2 Let φ : V → Sym(m,R) be a representation of a homogeneous cone
Ω. Then there exist elements g0 ∈ GL(Ω), A0 ∈ GL(m,R) and a representation
φ0 : V → Sym(m,R) of the clan (V,4) for which

φ(x) = A0 φ0(g0 · x) tA0, x ∈ V. (3.3)
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Proof. Let Gφ(Ω,Rm) be the group given by

Gφ(Ω,Rm) :=
{

(g, g̃) ∈ GL(Ω)×GL(m,R);φ(g · y) = g̃ φ(y) tg̃ for all y ∈ V
}
.

By de�nition, we have a surjective homomorphism π : Gφ(Ω,Rm)→ Gφ(Ω) mapping
(g, g̃) to g. Let G be the identity component of Gφ(Ω,Rm). Since G is the identity
component of an algebraic group, we have a decomposition G = HK with H ∩K =
{e}, where H is a maximal connected split solvable subgroup and K is a maximal
compact subgroup [6]. Without loss of generality, we can assume that Ker π ⊂ K.
Then π : H → π(H) =: Hφ ⊂ Gφ is an isomorphism. In other words, we can de�ne
a representation σ : Hφ → GL(m,R) in such a way that (h, σ(h)) ∈ H for h ∈ Hφ.
Since Hφ is split solvable, the representation σ is simultaneously triangularizable,
that is, there exists A1 ∈ GL(m,R) for which A1σ(h)A−1

1 ∈ Hm, h ∈ Hφ. On the
other hand, the groups Hφ and H are conjugate in GL(Ω), so that we can take
g1 ∈ GL(Ω) for which Hφ = g1Hg

−1
1 . Noting that A1 φ(g1 · E) tA1 ∈ S+

m, we take
A2 ∈ Hm for which A1 φ(g1 · E) tA1 = A2

tA2. Setting A3 := A−1
2 A1 ∈ GL(m,R), we

de�ne σ0(h) := A3 σ(g1hg
−1
1 )A−1

3 ∈ GL(m,R), h ∈ H, and φ0(x) := A3 φ(g1 ·x) tA3 ∈
Sym(m,R), x ∈ V . Then we have σ0(h) ∈ Hm, h ∈ H, and φ0(E) = Im. For h ∈ H
and y ∈ V we observe

φ0(h · y) = A3 φ((g1hg
−1
1 ) · (g1 · y)) tA3

= A3 σ(g1hg
−1
1 )φ(g1 · y) tσ(g1hg

−1
1 ) tA3

= σ0(h)φ0(y) tσ0(h).

Di�erentiating this relation, we obtain

φ0(x4y) = σ̇0(Lx)φ0(y) + φ0(y)tσ̇0(Lx), x, y ∈ V,

where σ̇0 is the di�erential representation of σ0. In particular, since φ0(E) = Im, we
have

φ0(x) = σ̇0(Lx) + tσ̇0(Lx).

Noting that σ̇0(Lx) ∈ hm, we obtain σ̇0(Lx) = φ0(x). Therefore we have

φ0(x4y) = φ0(x)φ0(y) + φ0(y)φ0(x),

which means that φ0 is a representation of the clan (V,4). Putting A0 := A−1
3 and

g0 := g−1
1 , we have (3). �

� 4. Canonical representation of a clan

Let V =
∑⊕

16j6k6r Vkj be the normal decomposition of a clan V with respect to
primitive idempotents E1, . . . , Er of V . Namely, we have E = E1 + . . .+ Er and

Vkj =

{
x ∈ V ;Ei4x =

1

2
(δik + δij)x, x4Ei = δijx for i = 1, . . . , r

}
. (4.4)
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Then we have Vkk = REk. Moreover, the following multiplication relations hold:

Vlk4Vkj ⊂ Vlj,

if k 6= i, j, then Vlk4Vij = 0,

Vlk4Vmk ⊂ Vlm, Vml according to l ≥ m or m ≥ l.

(4.5)

For k = 1, . . . , r, we setMk := Vk1 ⊕ · · · ⊕ Vk,k−1 ⊕ Vkk. By (5) we have

Mk4Ml ⊂Ml, Ml4Mk ⊂Ml

for 1 6 k < l 6 r. Therefore, if we set Ik :=Mk ⊕ . . .⊕Mr, k = 1, . . . , r, we have
a two-sided ideal sequence

V = I1 ⊃ I2 ⊃ . . . ⊃ Ir ⊃ Ir+1 := {0}.

The normal decomposition of V is orthogonal with respect to the inner product
de�ned in the axiom (C2). Putting nkj := dimVkj, 1 6 j < k 6 r, we take an
orthonormal basis {fkjα }, 1 6 α 6 nkj, of the subspace Vkj. Put mk := dimMk,

k = 1, . . . , r. Noting that mk = nk1 + . . . + nk,k−1 + 1, we de�ne a basis {e(k)
p },

1 6 p 6 mk, ofMk by

e(k)
p :=

{
fkjα , p = α +

∑
i<j nki, 1 6 α 6 nkj,√

2‖Ek‖−1Ek , p = mk.

We remark that the basis {e(k)
p } is not orthonormal because ‖e‖(k)

mk =
√

2. In view of
the natural isomorphismMk 3 v 7→ v̇ := v + Ik+1 ∈ Ik/Ik+1, we write Ṁk for the
quotient space Ik/Ik+1. For x ∈ V , let Rx be the right-multiplication operator on
the clan V by x. We write Rk(x) (resp. Lk(x)) for the matrix of the linear operator

on Ṁk induced by Rx (resp. Lx) with respect to the basis {ė(k)
p }, 1 6 p 6 mk, of

Ṁk. It is shown in [4, Lemma 4.2] that Rk(x) is symmetric for x ∈ V .

Theorem 3 The linear map Rk : V → Sym(mk,R) is a representation of the clan
(V,4) for k = 1, . . . , r.

Proof. We de�ne a linear form E∗k on V by

〈
r∑
i=1

xiEi +
∑
i<j

xji , E
∗
k〉 := xk, xi ∈ R, xji ∈ Vji.

By [4, Lemma 4.2] we have

Rk(x) = Lk(x) + tLk(x)− 〈x , E∗k〉 Imk .

On the other hand, we see from (5) that Lk(x) is a lower triangular matrix for x ∈ V .
Thus we obtain

Rk(x) = Lk(x)− 1

2
〈x , E∗k〉 Imk .
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On the other hand, we have by [4, (4.14)]

Rk(x4y) = Lk(x)Rk(y) +Rk(y)tLk(x)− 〈x , E∗k〉Rk(y).

Therefore we have

Rk(x4y) = Rk(x)Rk(y) +Rk(y)Rk(x) , x, y ∈ V.

Clearly Rk(E) = Imk , which completes the proof. �

Noting that m1 + . . . + mr = dimV (=: n), we de�ne a linear map R : V →
Sym(n,R) by

R(x) :=


R1(x)

R2(x)
. . .

Rr(x)

 , x ∈ V.

Namely, R is the direct sum of the representations R1, . . . , Rr, so that R is also a
representation of the clan (V,4).

Theorem 4 The representation R : V → Sym(n,R) of the clan V is injective.

Proof. Assume R(x) = 0 with x =
∑

16i6j6r xji, xji ∈ Vji. We see from [4, (4.11)]
that Rk(x) = 0 yields xki = 0 for i = 1, . . . , k. Therefore x = 0, whence Theorem 4
follows. �

Theorem 4 together with Proposition 1 implies that any homogeneous cone Ω is
linearly imbedded into S+

n with n = dim Ω. This description of the cone Ω is already
given by [5] and [8] (see also [3] and [4]).

Let us consider the representationsRk, k = 1, . . . , r, for the case that the clan V is
Sym(r,R). Then the normal decomposition coincides with the natural decomposition
by the entries. The inner product is given by (x|y) = d trxy with d = (r+ 1)/2. The
ideal Ik, k = 1, . . . , r, equals the set {x ∈ Sym(r,R);xij = 0 for all i, j < k}. Noting
that dimMk = k, we take the basis of the moduleMk as e

(k)
p := d−1/2(Ekp + Epk),

1 6 p < k, and e
(k)
k :=

√
2d−1/2Ekk, where Eij is the (i, j)-matrix unit. Then we

have
Rk(x) = (xij)16i,j6k ∈ Sym(k,R), x = (xij) ∈ Sym(r,R).

It is easy to see directly that Rk is a representation of the clan Sym(r,R) in this
case.
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