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This paper concerns with positive de�nite functions (PDF) φ on the usual locally
compact groups. A function φ has an extremal decomposition through an irreducible
decomposition of the unitary representation corresponding to φ (by the Gelfand�Naimark�
Segal construction method). However there are other ways to get extremal decompositions,
for example via the Choqet theorem. So it is interesting to �nd conditions which distinguish
the natural particular one from other decompositions. We describe a necessary and
su�cient condition for the above problem as well as an interesting negative example related
to [3], [4].
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� 1. Introduction

The subject of this paper is a study of extremal decompositions of continuous
positive de�nite functions (PDF) φ on a locally compact group G. A function φ has
a unitary representation U of G corresponding to it through the Gelfand�Naimark�
Segal construction method and after through an irreducible decomposition of U by
the Mautner method, we have a natural extremal decomposition of φ. However, other
disintegrations of φ are possible using, for example, the Choquet theorem. Hence,
the question arises as to conditions under which a disintegration of φ coincides with
the natural one described above. We describe a necessary and su�cient condition
for the question as well as an interesting negative example related to [3], [4].

� 2. Irreducible decompositions of unitary representations
and extremal decompositions of PDF

2.1. Presentation of the problem. At the beginning of this section, we outline
the problem that we will discuss in this paper. Let G be a separable locally compact
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group, and (H,U) be a continuous unitary representation of G with a normalized
cyclic vector v. It is well-known that (H,U) can be decomposed irreducibly to
{(Hλ, Uλ)}λ∈R according to a factor decomposition of the ring M generated by
U(g), g ∈ G, and a maximal Abelian ring A ofM′ (cf. [1], p. 6):

U(g) ∼
∑

Uλ(g) for all g ∈ G,

with a weight function σ(λ) on R (cf. [2]). Then, we have

< U(g)v, v >H=

∫
R
< Uλ(g)vλ, vλ >Hλ dσ(λ) with v =

∫
−
vλ
√
dσ(λ).

It is also well-known that vλ 6= 0 for σ-a.e. λ, and this enables us to make the
following de�nition. Denote

ρ(λ) = ‖vλ‖2
Hλ
,

then

φ(g) :=< U(g)v, v >H , φλ(g) := ρ(λ)−1 < Uλ(g)vλ, vλ >Hλ , dµ(λ) := ρ(λ)dσ(λ).

Note that µ is a probability measure, and we have φ(e) = φλ(e) = 1, because v is
normalized. Such a function is said to be normalized.

In any case, φ and φλ are continuous PDF on G, and further, φλ, λ ∈ R, are
extremal functions of a convex set of the normalized continuous PDFs by virtue of
the irreducibility of (Hλ, Uλ). Hence, we arrive at an extemal decomposition of φ:

φ(g) =

∫
R
φλ(g)dµ(λ) for all g ∈ G. (2.1)

Throughout this section, we refer to the disintegration (2.1) as a natural
decomposition with cyclic vector v. Now, let us consider the converse problem.

Suppose that for a normalized continuous PDF φ on G, a disintegration:

φ(g) =

∫
X

φλ(g)dµ(λ) for all g ∈ G,

is given such that
• (P1) the measurable space (X,B) is standard (which is Borel isomorphic to the
usual measurable space on R), and µ is a probabilty measure on it (thus, on R),
• (P2) for µ-a.e. λ, φλ is a normalized, continuous and extremal PDF on G,
• (P3) φλ(g) is measurable with respect to λ for each �xed g ∈ G.

We then ask
• (P) when and only when is this disintegration natural?

More precisely, let (H,U) be a continuous unitary representation of G with a
normalized cyclic vector v corresponding to φ, and M be the ring generated by
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{U(g)}g∈G. Then we ask whether there exists a maximal Abelian ring A of M′

with the following properties: take the ring N generated by M and A, and using
the center of N , decompose H to a generalized direct sum of Hλ, λ ∈ R, with a
weight function σ(λ); then, according to the irreducible decomposition of U and the
decomposition of v:

U(g) ∼
∑

Uλ(g), for all g ∈ G, and v =

∫
−
vλ
√
dσ(λ),

we have

φλ(g) =< Uλ(g)vλ, vλ >Hλ /‖vλ‖2
Hλ

for all g ∈ G and for σ-a.e.λ,

and dµ(λ) = ‖vλ‖2
Hλ
dσ(λ).

The main issue that we wish to discuss in this section is that particular question.

2.2. Main results. In what follows, we consider the problem (P), and assume
that all the conditions for (P) are ful�lled. In particular, in virtue of the above
assumptions on the measurability, we may assume that X = R, B = B(R), and µ is
a Borel probability measure onB(R). Moreover, as mentioned above, we assume that
G is separable, and thus, take a dense, countable subgroup G0 := {g1, g2, . . . , gn . . .}.

Now, take a continuous unitary representation (H,U) of G with a normalized
cyclic vector v ∈ H that correspondes to φ in (P) (for example, through the Gelfand�
Naimark�Segal construction method). First, we consider a decomposition of H into
a generalized direct sum (cf. [2], pp. 407�408). Set

Nm :=

{
ξ = (ξ1, · · · , ξm) ∈ Cm

∣∣∣ m∑
i=1

ξiU(gi)v = 0

}
.

Take a dense countable subset of Nm consisting of the vectors ξm,k = (ξm,k1 , . . . , ξm,km ),
k ∈ N. It follows that∫

R

m∑
i,j=1

ξm,ki ξm,kj φλ(g
−1
j gi) dµ(λ) =

m∑
i,j=1

ξm,ki ξm,kj < U(g−1
j gi)v, v >H= 0.

Since the integrand in the above equality is non-negative, there exists a Borel set N
with µ(N) = 0 that satis�es for all m ∈ N,

m∑
i,j=1

ξm,ki ξm,kj φλ(g
−1
j gi) = 0 for all λ ∈ N c. (2.2)

From this point on, we let λ run mainly through N c. Take a countable space Hd

consisting of linear combinations

n∑
i=1

αiU(gi)v,
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where n ∈ N, αi = pi + qi
√
−1, pi, qi ∈ Q, i = 1, . . . , n. It is a dense subset of H.

For λ ∈ N , introduce a scalar product < ·, · >λ on Hd :

<

n∑
i=1

αiU(gi)v,
m∑
i=1

βiU(gi)v >λ :=

n,m∑
i,j=1

αi βj φλ(g
−1
j gi).

To see that it is well-de�ned, we only have to check that

n∑
i=1

αiU(gi)v = 0 =⇒
n∑

i,j=1

αi αj φλ(g
−1
j gi) = 0.

To this end, take a sequence ξn,sk , k ∈ N, that converges to α := (α1, . . . , αn),
because α belongs to Nn. Since each component of ξn,sk satis�es the equation (2.2),
so do those of α.

Consequently, we get a Hilbert space Hλ, λ ∈ N c, after completing the quotient
space of Hd by the null kernel of the scalar product, and have a natural map from
Hd to Hλ:

h :=
n∑
i=1

αiU(gi)v −→ hλ.

It follows directly,

‖hλ‖2
Hλ

=
n∑

i,j=1

αi αj φλ(g
−1
j gi).

Second, we go to the de�nition of σ(λ)-summability in [2].
An F -family consists of the vector �elds {fλ}λ over R which ful�lls the following

conditions:
• (F1) for each λ ∈ N c, fλ ∈ Hλ,
• (F2) < fλ, hλ >Hλ is a µ-measurable function of λ for each h ∈ Hd,

• (F3) ‖fλ‖Hλ is a µ-measurable function of λ and

∫
‖fλ‖2

Hλ
dµ(λ) <∞.

It is easy to see that a vector �eld {hλ}λ derived from h ∈ Hd by the natural
maps (this will be denoted by {hλ}λ, h ∈ Hd, from this point on) belongs to F . We
also see that

‖h‖2
H =

∫
‖hλ‖2

Hλ
dµ(λ).

Now, we ask whether F -family with a suitable de�nition of the F -integral, which
is fully explained below, satis�es the conditions such that H is the generalized direct
sum ofHλ with the weight function σ(λ) (cf. [2]). First, we can easily see the following
claim.
• (F4) < fλ, gλ >Hλ is µ-measurable for any {gλ}λ ∈ F .

Next, let {fλ}λ ∈ F , and put

L(h) :=

∫
R
< hλ, fλ >Hλ dµ(λ) for any {hλ}λ, h ∈ Hd.
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Then L(h) is a continuous linear functional on Hd that extends continuously to the
entire space H. So we have a unique f ∈ H such that

< h, f >H=

∫
R
< hλ, fλ >Hλ dµ(λ).

Note that f = k, if {fλ}λ = {kλ}λ, k ∈ Hd. We call f the F -integral of {fλ}λ, and
require that it be equal to the σ-integral in [2]. The following equality is crucial to
this requirement:

• (F5) ‖f‖2
H =

∫
R
‖fλ‖2

Hλ
dµ(λ) for all {fλ}λ ∈ F .

Once, we ensure that (F5) is full�ed, this enables us to de�ne the isometric map
T from the Hilbert space F , equipped with the natural norm, to H. As the image
of T contains a dense subset Hd, it is a surjection. Therefore, we �nd that with the
de�nition of the F -family and the F -integral, H is the generalized direct sum of Hλ,
if and only if the condition (F5) is ful�lled.

Theorem 2.1 For (F5) to hold, it is necessary and su�cient that the following
condition (c.1) is ful�lled.
F (c.1) Suppose that {fλ}λ ∈ F satis�es∫

R
< hλ, fλ >Hλ dµ(λ) = 0 for any {hλ}λ, h ∈ Hd.

Then, we get fλ = 0 for σ-a.e. λ.

We omit the proof because of space, but it is not di�cult.

We remark that condition (c.1) has another expression. Namely, take a
continuous unitary representation (Kλ, Tλ) of G with a cyclic vector tλ such that

φλ(g) =< Tλ(g)tλ, tλ >Kλ for all g ∈ G.

As φλ is extremal and normalized, (Kλ, Tλ) is irreducible, and tλ is a unit vector for
each λ. Now, for the image hλ of

h =
n∑
i=1

αiU(gi)v ∈ Hd

by the natural map: Hd −→ Hλ, we get

‖hλ‖2
Hλ

=
n∑

i,j=1

αi αj φλ(g
−1
j gi) =

∥∥∥∥∥
n∑
i=1

αi Tλ(gi) tλ

∥∥∥∥∥
2

Kλ

.

This enables us to de�ne a unitary map from Hλ to Kλ : hλ 7→
∑n

i=1 αiTλ(gi)tλ. It
follows that Kλ and the space of linear combinations

∑n
i=1 αiTλ(gi)tλ, where n ∈ N,

αi ∈ C, gi ∈ G0, i = 1, . . . , n, play a similar role to Hλ and {hλ}λ, h ∈ Hd, to obtain
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σ(λ)-summability in [2]. Therefore, we now �nd that condition (c.1) is equivalent to
the following condition (c.2).

F (c.2) If a vector �eld {ηλ}λ, η ∈ Kλ, over R satis�es the following three
hypotheses:
(c.2.1) < ηλ, Tλ(g)tλ >Kλ is µ-measurable for every g ∈ G0,

(c.2.2) ‖ηλ‖Kλ is µ-measurable, and

∫
R
‖ηλ‖2

Kλ
dµ(λ) <∞, and

(c.2.3)

∫
R
< ηλ, Tλ(g)tλ >Kλ dµ(λ) = 0 for all g ∈ G0,

then, ηλ = 0 for µ-a.e. λ.

Next we proceed to address the main problem in this subsection.

Theorem 2.2 Let φ be a continuous, normalized PDF on a separable locally
compact group G, and suppose that a disintegration of φ is given such that every
condition in (P) is satis�ed. Then the disintegration is natural, if and only if the
condition (c.2) is ful�lled.

Proof. Since the proof of necessity is not di�cult, we go to the su�ciency. Given a
disintegration in (P), take a continuous unitary representation (H,U) of G with a
cyclic vector v, and take another irreducible ones (Kλ, Uλ) and normalized vectors
wλ ∈ Kλ such that

φ(g) =< U(g)v, v >H , and φλ(g) =< Uλ(g)wλ, wλ >Kλ for all λ ∈ R and g ∈ G.

By virtue of condition (c.2) and Theorem 2.1 we get a representation of H as a
generalized direct sum of Kλ, and every U(g)v has an expression:

U(g)v =

∫
−
Uλ(g)wλ

√
dµ(λ),

�rst, for all g ∈ G0, and second, for all g ∈ G. As < Uλ(g)xλ, yλ >Kλ is measurable

for any xλ = Uλ(ζ1)wλ, yλ = Uλ(ζ2)wλ, ζ1, ζ2 ∈ G, and 1 > ‖Uλ(g)‖, so
∑

Uλ(g)

make sense (cf. [2]), and is equal to U(g), because they coincides on Hd.
Therefore, the rest of the proof involves examining the ring A that is a center of

the generalized direct sum. Recall thatM is the ring generated by U(g), g ∈ G. We
only need to ensure that A is a maximal Abelian ring inM′. Once this is assured,
the ring N generated by M and A satis�es N ∩ N ′ = A, and it follows that the
disintegration is natural.

Take any function z ∈ L∞µ (R), and de�ne Pz on H by

Pzh :=

∫
−
z(λ)hλ

√
dµ(λ) for all h =

∫
−
hλ
√
dµ(λ).

We know that A = {Pz| z ∈ L∞µ (R)} (cf. [2]). Now, take any P ∈ M′ ∩ A′ which
is a projection. Then, < PPBU(g)v, v >H is an additive function of B ∈ B for any
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g ∈ G, where we use PB instead of PχB for the sake of simplicity. We readily see
that PBv = 0 implies < PPBU(g)v, v >H= 0. In other words, the additive function
is absolutely continuous with respect to µ. Hence, some ωλ(g) ∈ L1

µ(R) exists such
that

< PPBU(g)v, v >H=

∫
B

ωλ(g)dµ(λ) for all B ∈ B(R). (2.3)

Expanding both side of the inequality

‖PB(I − U(g))v‖2
H > ‖PPB(I − U(g))v‖2

H ,

and setting Pv :=

∫
−
pλ
√
dµ(λ) give

∫
B

{2− φλ(g)− φλ(g)}dµ(λ) >
∫
B

{2‖pλ‖2
Kλ
− ωλ(g)− ωλ(g−1)}dµ(λ) > 0. (2.4)

It follows from (2.3) that∫
B

ωλ(g
−1) dµ(λ) =

∫
B

ωλ(g) dµ(λ),

and that ωλ(g) = ωλ(g
−1) for any g ∈ G and for µ-a.e. λ. Consequently, there exists

a Borel set N1 with µ(N1) = 0 such that

ωλ(gk) = ωλ(g
−1
k ) for all k ∈ N and λ ∈ N c

1 .

Hence, it follows from (2.4) that,∫
B

{1− Reφλ(gk)}dµ(λ) >
∫
B

{‖pλ‖2
Hλ
− Reωλ(gk)}dµ(λ) for all k ∈ N.

Again, there exists a Borel set N2 with µ(N2) = 0 such that

1− Reφλ(gk) > ‖pλ‖2
Kλ
− Reωλ(gk) for all k ∈ N and λ ∈ N c

2 .

Proceeding in a similar manner, we �nd that there exists a Borel set N3 with
µ(N3) = 0 such that for any λ ∈ N c

3 , ωλ(·) is a PDF on G0. Using g := e in (2.4)
produces

‖pλ‖2
Kλ

= ωλ(e) (2.5)

for µ-a.e. λ. Therefore, we conclude that there exists a Borel set N4 with µ(N4) = 0
such that (2.5) and the following inequalities hold:

1− Reφλ(g) > ωλ(e)− Reωλ(g) for all g ∈ G0, (2.6)

n∑
i,j=1

αiαjφλ(g
−1
i gj) >

n∑
i,j=1

αiαjωλ(g
−1
i gj) > 0, (2.7)

for all n ∈ N, αi ∈ C, gi ∈ G0, i = 1, . . . , n.
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In what follows, let λ run through only N c
4 , unless otherwise stated, and let us

examine the continuity of ωλ(·). As φλ(g) is a continuous function of g, for each
n ∈ N, there exists a symmetric neighbourhood Un,λ ≡ Un of e such that U2

n+1 ⊂ Un
and

n−1 > 1− Reφλ(g) for all g ∈ Un.

Take any g ∈ G and �x it. Further, take γn ∈ G0 ∩ gUn for each n ∈ N. It follows
that γ−1

m γn ⊂ UN for all n,m > N + 1, and that

2

N
ωλ(e) > 2ωλ(e)(1− Reφλ(γ

−1
m γn))

> 2ωλ(e)(ωλ(e)− Reωλ(γ
−1
m γn))

> |ωλ(γm)− ωλ(γn)|.

Hence, {ωλ(γn)}n converges, and the limit is independent of the choice {γn}n. We
denote the limit by the same letter ωλ(g), because it is an extension of ωλ(·) from
G0 to the entire group.

Next, given ε > 0, take n ∈ N such that

2

n− 1
ωλ(e) < ε.

Then, for any g′ ∈ gUn we can take the above {γ′m}m from the set gUn. Thus, we
�nd that

ε >
2

n− 1
ωλ(e) > |ωλ(γ′m)− ωλ(g)|.

Letting m −→∞, we obtain

ε >
2

n− 1
ωλ(e) > |ωλ(g′)− ωλ(g)|,

and this demonstrates the continuity of ωλ(·).
Finally, for each n ∈ N and {αi}ni=1 ⊂ C, let F be the set consisting of (g1, . . . , gn),

gi ∈ G, such that

n∑
i,j=1

αi αj φλ(g
−1
i gj) >

n∑
i,j=1

αi αj ωλ(g
−1
i gj) > 0.

It is a closed set in Gn and contains Gn
0 . Therefore, we have F = Gn, and both of the

functions, ωλ and φλ − ωλ are continuous PDFs on G. By the extremal assumption
we thus have

ωλ(g) = ωλ(e)φλ(g) for all g ∈ G and λ ∈ N c
4 .

It follows that regarding ωλ(e) ≡ ω(λ) as an essentially bounded measurable function
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of λ, we get

< PωU(g)v, v >H =

∫
R
ωλ(e) < Uλ(g)wλ, wλ >Kλ dµ(λ)

=

∫
R
ωλ(e)φλ(g) dµ(λ)

=

∫
R
ωλ(g) dµ(λ)

=< PU(g)v, v >H .

In other words, P = Pω ∈ A. Therefore, we have A =M′ ∩A′, and A is a maximal
ring ofM′. �

2.3. Characters on the in�nite permutation group, and their disintegra-
tions. We begin by reviewing brie�y Thoma's result on characters. Let S∞ be the
in�nite permutation group of the �nite permutations on N. Note that each g ∈ S∞
has a cycle notation. In other word, g is expressed as a product of pairwise disjoint
cycles. For each n > 2, let rn(g) be the number of the cycles with length n in the
cycle notation for g.

By a character φ of S∞ we mean that it is a PDF on S∞ (equipped with the
discrete topology) such that φ(e) = 1 and φ(ghg−1) = φ(h) for any g, h ∈ S∞.
Clearly, the set of the characters forms a convex set. The extremal point of the
convex set is said to be indecomposable.

Finally, let `+
d (Z) be the set of the sequence {βi}+∞

i=−∞ such that βi > 0 for all
i ∈ Z, two sequences {βi}+∞

i=1 and {β−i}+∞
i=1 are both decreasing for i ∈ N, and∑+∞

i=−∞ βi = 1.
With that background, we are now ready to describe Thoma's result (cf. [4]).

Theorem 2.3 [4] Given any indecomposable character φ on S∞, there exists a
unique {βi}+∞

i=−∞ ∈ `+
d (Z) such that

φ(g) =
∞∏
n=2

(
∞∑
i=1

βni + (−1)n+1

∞∑
i=1

βn−i

)rn(g)

for all g ∈ S∞.

Conversely, given {βi}+∞
i=−∞ ∈ `+

d (Z), the right hand side of the above equality gives
an indecomposable character.

Next, we recall again integral expressions of indecomposable characters on S∞ by
Obata. However, we use a somewhat di�erent notation from that of [3] to avoid
inconsistencies with our previous notations.

Obata [3] had a disintegration of the indecomposable characters. Take the direct
product Z∞ of countable copies of Z. An element λ ∈ Z∞ is also regarded as a map
from N to Z. With each λ, we have a partition Γλ := {λ−1({j})}j∈Z of N. De�ne the
Young subgroup Hλ by

Hλ :=
∏
j∈Z

S(λ−1({j})) (restricted direct product),
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where S(λ−1({j})) is a group of the permutations that leaves every element in
λ−1({j})c invariant. Take a one-dimensional representation χλ of Hλ de�ned by

χλ(g) := sgn g−,

according to the unique expression of g = g+g0g− with

g+ ∈ S
(
∪j>1λ

−1({j})
)
, g0 ∈ S(λ−1({0})), g− ∈ S

(
∪j>1λ

−1({−j})
)
.

Take the induced representation U(Γλ;χλ) := ind(χλ; Hλ ↑ S∞). It is irreducible,
if all the cardinals of the sets λ−1({n}), n ∈ N, are in�nite. In any case, it is a cyclic
unitary representation for any λ ∈ Z∞, and

φλ(g) :=

{
χλ(g), if g ∈ Hλ,

0, otherwise

is a normalized PDF that corresponds to U(Γλ;χλ) with a cyclic vector. Finally, we
introduce a probability measure µβ ≡ µ for each β := {βi}+∞

i=−∞ ∈ `+
d (Z) on the

standard Borel space (Z∞,B(Z∞)) as a product measure of countable copies of ν
on Z such that ν({i}) = βi for all i ∈ Z. Note that the set of λ ∈ Z∞ such that
|λ−1({n}| < ∞ is of zero measure, so that U(Γλ;χλ) is irreducible for µ-a.e. λ. In
other word, φλ is extremal for the same λ.

Theorem 2.4 [3] Let φ ≡ φβ be an indecomposable character corresponding to
β ∈ `+

d (Z) with β0 = 0. Then, we have

φβ(g) =

∫
Z∞

φλ(g) dµβ(λ) for all g ∈ S∞.

In what follows, we examine whether Obata's disintegration is natural or not.
We retain the notation in the previous subsections.

So, given β ∈ `+
d (Z), β0 = 0, we have the indecomposable character φ ≡ φβ, and

the probability measure µ ≡ µβ on Z∞, and the disintegration described in Theorem
2.4. The representation space H′λ of U(Γλ;χλ) consists of the C-valued functions on
S∞ which satis�es

(1) f(gh) = χλ(h)f(g) for all g ∈ S and h ∈ Hλ,

(2)
∑

g∈G/Hλ

|f(g)|2 <∞.

As usual, we regard |f(g)| as a function on S/Hλ in virtue of (1). The
representation U(Γλ;χλ) acts by translations:

U(Γλ;χλ)(g)f(·) = f(g−1·) for all f ∈ H′λ, g ∈ S∞.

Now, we deform (H′λ, U(Γλ;χλ)), using a section s ≡ sλ of the natural map π;
S∞ −→ S∞/Hλ. For any f ∈ H

′

λ put

F (X) := f(s(X)) for all X ∈ S∞/Hλ.
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We readily see that F ∈ `2(S∞/Hλ), and the map W : f −→ F is isometric.
Moreover, for any F ∈ `2(S∞/Hλ), a function f de�ned by

f(g) := F (π(g))χλ(s(π(g))−1g)

satis�es f(s(X)) = F (X) for any X ∈ S∞/Hλ and f(gh) = χλ(h)f(g) for all
g ∈ S∞ and h ∈ Hλ. In other words, W is a unitary operator. We set

Uλ(g) := W ◦ U(Γλ;χλ)(g) ◦W−1 and Kλ := `2(S∞/Hλ).

Then, it easily follows that

(Uλ(g)F )(X) = F (g−1X)χλ
(
sλ(g

−1X)−1g−1sλ(X)
)
,

and the cyclic vector Fλ, e ∈ Kλ corresponding to fλ, e ∈ H
′

λ de�ned by

fλ, e(g) :=

{
χλ(g), if g ∈ Hλ,

0, otherwise,

is a function (up to scalar factor) such that

Fλ, e(X) :=

{
1, if X = Hλ,

0, otherwise.

Therefore, for the present purpose, we only have to examine the following
question (Q):

(Q) Let Gλ ∈ `2(S∞/Hλ)(≡ Kλ) and

∫
Z∞
‖Gλ‖2

Kλ
dµβ(λ) <∞.

Suppose that

< Gλ, Uλ(g)Fλ, e >Kλ= Gλ(gHλ)χλ
(
sλ(Hλ)

−1g−1sλ(gHλ)
)

is a measurable function of λ, and∫
Z∞

Gλ(gHλ)χλ
(
sλ(Hλ)

−1g−1sλ(gHλ)
)
dµβ(λ) = 0 for all g ∈ S∞.

Then, does it implies that Gλ = 0 for µ-a.e. λ ?

The next theorem is a partial answer to the question (Q).

Theorem 2.5 For β = {βi}+∞
i=−∞ with β0 = 0, if we have either βi = βj 6= 0 or

β−i = β−j 6= 0 for some di�erent i, j ∈ N, then (Q) is negative, so that Obata's
disintegration of φβ is not natural.
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Proof. Suppose that the �rst assumption holds. We take a transposition p := (i, j)
on Z. This transposition acts from the left on Z∞ such that (pλ)n = p(λn), where
λn is the n-th component of λ ∈ Z∞. Note that

pµβ = µβ, Hpλ = Hλ and χpλ = χλ.

De�ne a function Gλ ∈ `2(S∞/Hλ) by

Gλ(X) := ψ{ω∈Z∞|X=Hω}(λ) ·
[
ψ{i}(λ1)− ψ{j}(λ1)

]
,

using the indicator function ψ{i} of the set {i}. Then,∫
Z∞
‖Gλ‖2

Kλ
dµβ(λ) = 2βi,

which is easily checked, and furthermore,

Gλ(gHλ)χλ
(
sλ(Hλ)

−1g−1sλ(gHλ)
)

= ψ{ω∈Z∞|gHλ=Hω}(λ)×
×

[
ψ{i}(λ1)− ψ{j}(λ1)

]
χλ(g

−1).

Therefore, the above function is measurable, and it has the opposite sign and the
same absolute value according to the change of λ to pλ. This leads to∫

Z∞
Gλ(gHλ)χλ

(
sλ(Hλ)

−1g−1sλ(gHλ)
)
dµβ(λ) = 0 for all g ∈ S∞.

While, we have Gλ 6= 0 for µ-a.e. λ, and this demonstrates the proof. The second
case is similar. �
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