MSC 43A85

Poisson transforms for the complex hyperboloid ¹

© O. V. Betina

Derzhavin Tambov State University, Tambov, Russia

The representation U of the Lorentz group $G = \mathrm{SL}(2,\mathbb{C})$ by translations in polynomials on the complex hyperboloid \mathcal{X} in \mathbb{C}^3 is the multiplicity free direct sum of finite dimensional representations. We write operators (Poisson transforms) intertwining finite dimensional representations in a standard realization with the representation U. Using a non-usual form of intertwining operators for principal series of G we write a differential form for Poisson transforms. Finally, we write explicitly spherical functions on \mathcal{X} .

Keywords: the Lorentz group, representations, distributions, hyperboloid, Poisson transforms, spherical functions

§ 1. Principal series and intertwining operators

The group $G = \mathrm{SL}(2,\mathbb{C})$ consists of complex 2×2 matrices:

$$g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}, \quad \alpha \delta - \beta \gamma = 1.$$
 (1.1)

For such a matrix g, let \widehat{g} denote the matrix obtained by permutations $\alpha \longleftrightarrow \delta$ and $\beta \longleftrightarrow \gamma$:

$$\widehat{g} = \left(\begin{array}{cc} \delta & \gamma \\ \beta & \alpha \end{array} \right).$$

The map $g \mapsto \widehat{g}$ is an involutive automorphism of the group G.

For $\lambda \in \mathbb{C}$, $k \in \mathbb{Z}$, $a \in \mathbb{C} \setminus \{0\}$, we denote

$$z^{\lambda,k} = |z|^{\lambda} \left(\frac{z}{|z|}\right)^k.$$

Observe that the following differentiation formulae hold:

$$\frac{\partial}{\partial z} z^{\lambda,k} = \frac{\lambda + k}{2} z^{\lambda - 1, k - 1}, \quad \frac{\partial}{\partial \overline{z}} z^{\lambda,k} = \frac{\lambda - k}{2} z^{\lambda - 1, k + 1}.$$

 $^{^1\}mathrm{Supported}$ by the Russian Foundation for Basic Research (RFBR): grant 09-01-00325-a, Sci. Progr. "Development of Scientific Potential of Higher School": project 1.1.2/9191, Fed. Object Progr. 14.740.11.0349 and Templan 1.5.07

We also use the notation ("generalized" powers):

$$a^{(n)} = a(a-1)(a-2)\dots(a-n+1).$$

Define principal series representations of the group G. Let $\sigma \in \mathbb{C}$, $2m \in \mathbb{Z}$. Denote by $\mathcal{D}_{\sigma,m}$ the space of functions f(z) in $C^{\infty}(\mathbb{C})$ such that "inverse" functions $\widehat{f}(z) = z^{2\sigma,2m} f(-1/z)$ also belong $C^{\infty}(\mathbb{C})$. The representation $T_{\sigma,m}$ of the principal series acts on $\mathcal{D}_{\sigma,m}$ by

$$(T_{\sigma,m}(g)f)(z) = f(z \cdot g) (\beta z + \delta)^{2\sigma,2m}, \quad z \cdot g = \frac{\alpha z + \gamma}{\beta z + \delta}.$$

The contragredient representation $\widehat{T}_{\sigma,m}$ is obtained from $T_{\sigma,m}$ by means of the involution $g \mapsto \widehat{g}$:

$$\widehat{T}_{\sigma,m}(g) = T_{\sigma,m}(\widehat{g}).$$

Representations $T_{\sigma,m}$ and $\widehat{T}_{\sigma,m}$ are equivalent. A bilinear form

$$\langle F, f \rangle_{\mathbb{C}} = \int_{\mathbb{C}} F(z) f(z) dx dy, \quad z = x + iy,$$

is invariant with respect to the pair $(T_{\sigma,m}, T_{-\sigma-2,-m})$.

Introduce an operator $A_{\sigma,m}$:

$$(A_{\sigma,m}f)(z) = \int_{\mathbb{C}} (1-zw)^{-2\sigma-4,-2m} f(w) \, du \, dv, \quad w = u + iv.$$

This operator intertwines $T_{\sigma,m}$ with $\widehat{T}_{-\sigma-2,-m}$ as well $\widehat{T}_{\sigma,m}$ with $T_{-\sigma-2,-m}$:

$$A_{\sigma,m}T_{\sigma,m}(g) = \widehat{T}_{-\sigma-2,-m}(g)A_{\sigma,m},$$

$$A_{\sigma,m}\widehat{T}_{\sigma,m}(g) = T_{-\sigma-2,-m}(g)A_{\sigma,m}.$$

[Notice that often one takes an intertwining operator with the kernel $(z-w)^{-2\sigma-4,-2m}$. It intertwines $T_{\sigma,m}$ with $T_{-\sigma-2,-m}$. But for our purposes (we want to construct polynomial quantization and to study finite dimensional analyse on a complex hyperboloid), just introduced operator $A_{\sigma,m}$ is much more convenient.]

The composition of operators $A_{-\sigma-2,-m}$ and $A_{\sigma,m}$ is a scalar operator, i. e. an operator of multiplication by a number:

$$A_{-\sigma-2,-m}A_{\sigma,m} = \omega_{0,0}(\sigma,m)E,$$

where

$$\omega_{0,0}(\sigma,m) = -(-1)^{2m} \frac{\pi^2}{(\sigma+1)^2 - m^2} \,.$$

Let \mathfrak{g} be the Lie algebra of the group G. It acts on $\mathcal{D}_{\sigma,m}$ by means of some first order differential operators. These operators give rise to a representation of the Lie algebra \mathfrak{g} and its universal enveloping algebra not only on $\mathcal{D}_{\sigma,m}$, but also on other

spaces, for example, on the space $C^{\infty}(\mathbb{C})$, on the space $\operatorname{Pol}(\mathbb{C})$ of polynomials on \mathbb{C} , on the space $\mathcal{D}'(\mathbb{C})$ of distributions on \mathbb{C} , on the space $\mathcal{D}'_0(\mathbb{C})$ distributions on \mathbb{C} concentrated at zero.

The space $\mathcal{D}_0'(\mathbb{C})$ consists of linear combinations of the delta function $\delta(z, \overline{z})$ and its derivatives

 $\delta^{(k,l)}(z,\overline{z}) = \frac{\partial^{k+l}}{\partial z^k \, \partial \overline{z}^l} \, \delta(z,\overline{z}).$

The spaces $\operatorname{Pol}(\mathbb{C})$ u $\mathcal{D}'_0(\mathbb{C})$ are Verma modules with respect to $T_{\sigma,m}$.

The intertwining operator $A_{\sigma,m}$ carries out the basis $z^k \overline{z}^l$ in Pol(\mathbb{C}) to the basis $\delta^{(k,l)}(z,\overline{z})$ in $\mathcal{D}'_0(\mathbb{C})$ and back (with factors):

$$A_{\sigma,m}\left(z^{k}\overline{z}^{l}\right) = \omega_{k,l}(\sigma,m) \cdot \delta^{(k,l)}(z,\overline{z}), \qquad (1.2)$$

$$A_{-\sigma-2,-m}\left(\delta^{(k,l)}(z,\overline{z})\right) = (\sigma+m)^{(k)}(\sigma-m)^{(l)} \cdot z^k \overline{z}^l,$$

where

$$\omega_{k,l}(\sigma,m) = -(-1)^{2m} \frac{\pi^2}{(\sigma+1+m)^{(k+1)}(\sigma+1-m)^{(l+1)}}.$$
 (1.3)

§ 2. Finite dimensional representations

Let 2k, $2l \in \mathbb{N} = \{0, 1, 2, \ldots\}$. Let $V_{k,l}$ be the space of polynomials $\varphi(z, \overline{z})$ in two variables z and \overline{z} of degrees $\leq 2k$ and $\leq 2l$ in variables z and \overline{z} respectively. On this space the representation $\pi_{k,l}$ of G acts by

$$(\pi_{k,l}(g)\varphi)(z,\overline{z}) = \varphi(z \cdot g, \overline{z \cdot g})(\beta z + \delta)^{2k}(\overline{\beta}\overline{z} + \overline{\delta})^{2l}.$$

A basis in $V_{k,l}$ consists of monomials $z^p \overline{z}^q$, where $0 \leq p \leq 2k$, $0 \leq q \leq 2l$, so that $\dim V_{k,l} = (2k+1)(2l+1)$. All representations $\pi_{k,l}$ are irreducible. Conversely, any irreducible finite dimensional representation is equivalent to one of $\pi_{k,l}$. In particular, the contragredient representation $\widehat{\pi}_{k,l}$ defined by $\widehat{\pi}_{k,l}(g) = \pi_{k,l}(\widehat{g})$ is equivalent to $\pi_{k,l}$.

The representation $\pi_{k,l}$ preserves the following bilinear form $B_{k,l}(\psi,\varphi)$ on $V_{k,l}$: at basis elements it is given by

$$B_{k,l}(z^r\overline{z}^s, z^p\overline{z}^q) = (-1)^{p+q} {2k \choose p}^{-1} {2l \choose q}^{-1} \delta_{p,2k-r} \delta_{q,2l-s},$$

 $\delta_{i,j}$ being the Kronecker delta. Such a form is unique up to a factor. Parallel with it we consider on $V_{k,l}$ the bilinear form $B'_{k,l}(\psi,\varphi) = B_{k,l}(\psi,\widehat{\varphi})$, so that

$$B'_{k,l}(z^r \overline{z}^s, z^p \overline{z}^q) = (-1)^{p+q} {2k \choose p}^{-1} {2l \choose q}^{-1} \delta_{p,r} \delta_{q,s}.$$
 (2.1)

The form $B'_{k,l}$ is invariant with respect to the pair $(\widehat{\pi}_{k,l}, \pi_{k,l})$, i. e.

$$B'_{k,l}(\psi, \pi_{k,l}(g)\varphi) = B'_{k,l}(\widehat{\pi}_{k,l}(g^{-1})\psi, \varphi).$$

For $\sigma = k + l$, m = k - l, the representation $T_{\sigma,m} = T_{k+l,k-l}$ is reducible, it has an invariant finite dimensional irreducible subspace $V_{k,l}$. The module $\mathcal{D}'_0(\mathbb{C})$ with respect to $T_{-k-l-2,-k+l}$ has a submodule invariant with respect to \mathfrak{g} . The quotient module is equivalent to $V_{k,l}$.

We can write the form $B'_{k,l}$ by means of the intertwining operator $A_{k+l,k-l}$ (which is defined just on $V_{k,l}$):

$$B'_{k,l}(\psi,\varphi) = -\frac{1}{\pi^2} (2k+1) (2l+1) \langle A_{k+l,k-l}\psi, \varphi \rangle_{\mathbb{C}}, \qquad (2.2)$$

it follows from (1.2), (1.3) and (2.1).

§ 3. Hyperboloid

Introduce in \mathbb{C}^3 a bilinear form

$$[x,y] = -x_1y_1 + x_2y_2 + x_3y_3.$$

Denote by \mathcal{X} the hyperboloid [x, x] = 1. The manifold \mathcal{X} can be realized as a set of matrices

$$x = \frac{1}{2} \begin{pmatrix} 1 - x_3 & x_2 - x_1 \\ x_2 + x_1 & 1 + x_3 \end{pmatrix}$$

with det x = 1. The group G acts on the space $Mat(2, \mathbb{C})$ as follows: $x \to g^{-1}xg$. On the hyperboloid \mathcal{X} it acts transitively. The stabilizer of the point

$$x^0 = (0, 0, 1) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

is the diagonal subgroup H of G, it consists of matrices

$$h = \begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix}, \quad \alpha \delta = 1.$$

An action of G on functions f on \mathcal{X} by translations is denoted by U:

$$(U(g)f)(x) = f(g^{-1}xg), \quad g \in G.$$

Introduce on \mathcal{X} horospherical coordinates ξ, η :

$$x = N^{-1}(\xi + \eta, \xi - \eta, 1 + \xi \eta), \quad N = 1 - \xi \eta,$$

in the matrix form we have:

$$x = \frac{1}{N} \left(\begin{array}{cc} -\xi \eta & -\eta \\ \xi & 1 \end{array} \right),$$

These coordinates are defined on \mathcal{X} except $x_3 = -1$. The action $x \mapsto g^{-1}xg$ of G is given by a linear-fraction transformation in each variable ξ and η separately:

$$\xi \to \widetilde{\xi} = \xi \cdot g, \quad \eta \to \widehat{\eta} = \eta \cdot \widehat{g},$$

so that $(U(g)f)(\xi,\eta) = f(\widetilde{\xi},\widehat{\eta})$. The initial point x^0 has coordinates $\xi = 0$, $\eta = 0$. An element g, see (1.1), moves x^0 to a point x with coordinates

$$\xi = \frac{\gamma}{\delta} \,, \quad \eta = \frac{\beta}{\alpha} \,, \tag{3.1}$$

so that $N = 1/\alpha \delta$.

There are two Laplace operators Δ u $\overline{\Delta}$ on \mathcal{X} :

$$\Delta = N^2 \frac{\partial^2}{\partial \xi \partial \eta} \ , \quad \overline{\Delta} = \overline{N}^2 \frac{\partial^2}{\partial \overline{\xi} \partial \overline{\eta}} \ ,$$

they are generators in the algebra of G-invariant differential operators on \mathcal{X} .

Let us denote by \mathcal{A} and \mathcal{A} spaces of analytic and antianalytic polynomials in \mathbb{C}^3 respectively. A polynomial f in \mathcal{A} is called *harmonic* (with respect to the form [x,y]) if

$$\left(-\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}\right)f = 0.$$

Let us denote by \mathcal{H} the space of harmonic polynomials and by $\overline{\mathcal{H}}$ the corresponding subspace in $\overline{\mathcal{A}}$. Let $\mathcal{H}_{k,l}$ be the subspace in $\mathcal{H} \otimes \overline{\mathcal{H}}$ consisting of homogeneous polynomials of degree k in x_1, x_2, x_3 and degree l in $\overline{x}_1, \overline{x}_2, \overline{x}_3$. We denote restrictions of spaces $\mathcal{H} \otimes \overline{\mathcal{H}}$ and $\mathcal{H}_{k,l}$ to \mathcal{X} by $(\mathcal{H} \otimes \overline{\mathcal{H}})(\mathcal{X})$ and $\mathcal{H}_{k,l}(\mathcal{X})$ respectively. This restricting map is one-to-one. Notice that $(\mathcal{H} \otimes \overline{\mathcal{H}})(\mathcal{X})$ coincides with the space of restrictions to \mathcal{X} of all polynomials on \mathbb{C}^3 . The space $\mathcal{H}_{k,l}(\mathcal{X})$ is invariant and irreducible with respect to U, the corresponding representation is equivalent to $\pi_{k,l}$, see below. Polynomials in this space are eigenfunctions for Laplace operators:

$$\Delta f = k(k+1)f, \quad \overline{\Delta}f = l(l+1)f.$$

§ 4. Poisson transforms, spherical functions

For representations $\pi_{k,l}$ and $\widehat{\pi}_{k,l}$, an invariant with respect to H in the space $V_{k,l}$ exists for integer k and l only, it is the monomial

$$\theta_{k,l}(z,\overline{z}) = z^k \overline{z}^l.$$

It is unique up to a factor. It gives rise to an intertwining operator mapping $V_{k,l}$ to functions on \mathcal{X} , we call it the *Poisson transform* $\mathcal{P}_{k,l}$. This transform assigns to a polynomial $\varphi(z,\overline{z})$ in $V_{k,l}$ the following function $(\mathcal{P}_{k,l}\varphi)(x)$ on \mathcal{X} :

$$(\mathcal{P}_{k,l}\varphi)(x) = B_{k,l}(\pi(g^{-1})\theta_{k,l},\varphi)$$

= $B_{k,l}(\theta_{k,l},\pi(g)\varphi),$ (4.1)

where g is an element in G such that $g^{-1}x^0g = x$. It intertwines $\pi_{k,l}$ and U:

$$\mathcal{P}_{k,l} \, \pi_{k,l}(g) = U(g) \, \mathcal{P}_{k,l}.$$

The forms $B_{k,l}(\psi,\varphi)$ and $B'_{k,l}(\psi,\varphi)$ coincide for $\psi=\theta_{k,l}$:

$$B_{k,l}(\theta_{k,l},\varphi) = B'_{k,l}(\theta_{k,l},\varphi).$$

Therefore, we can rewrite (4.1) as

$$(\mathcal{P}_{k,l}\varphi)(x) = B'_{k,l}(\widehat{\pi}(g^{-1})\theta_{k,l},\varphi)$$

= $B'_{k,l}(\theta_{k,l},\pi(g)\varphi),$

The latter formula, together with (2.2), (1.2), (1.3), gives a differential form for the Poisson transform:

$$(\mathcal{P}_{k,l}\varphi)(x) = c(k,l) \int_{\mathbb{C}} \delta^{(k,l)}(z,\overline{z}) \Big(T_{k+l,k-l}(g)\varphi(z,\overline{z}) \Big) dx dy$$

$$= c(k,l) \cdot (-1)^{k+l} \frac{\partial^{k+l}}{\partial z^{k} \partial \overline{z}^{l}} \bigg|_{z=0} \varphi(z \cdot g, \overline{z \cdot g}) (\beta z + \delta)^{2k} (\overline{\beta} \overline{z} + \overline{\delta})^{2l},$$

where c(k,l) = k! l!/(2k)! (2l)!. We get $(\mathcal{P}_{k,l}\varphi)(x)$ as a function of horospherical coordinates ξ, η , see (3.1). This function is just a polynomial on \mathcal{X} lying in $\mathcal{H}_{k,l}(\mathcal{X})$. Therefore, the Poisson transform $\mathcal{P}_{k,l}$ maps $\pi_{k,l}$ isomorphically onto $\mathcal{H}_{k,l}(\mathcal{X})$.

In particular, H-invariant $\theta_{k,l}$ goes to a H-invariant $\Psi_{k,l}$ in $\mathcal{H}_{k,l}(\mathcal{X})$ (a spherical function):

$$\Psi_{k,l}(x) = (-1)^{k+l} {2k \choose k}^{-1} {2l \choose l}^{-1} N^{-k} \sum_{j=0}^{k} {k \choose j}^{2} (\xi \eta)^{j} \times$$

$$\times \overline{N}^{-l} \sum_{i=0}^{l} {l \choose i}^{2} (\overline{\xi} \overline{\eta})^{i}$$

$$= (-1)^{k+l} {2k \choose k}^{-1} {2l \choose l}^{-1} P_{k}(x_{3}) P_{l}(\overline{x}_{3}),$$

where $P_m(t)$ is the Legendre polynomial.