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§ 1. Lobachevsky—Galilei plane

Let A be an algebra over R of dimension 2 consisting of elements z = z + 1y,
z,y € R with relation i = 0 (the algebra of dual numbers). It is not a field: pure
imaginary numbers ¢y are zero divisors. For z = x + 4y, the conjugate number is
Z=x— 1.

The Lobachevsky—Galilei plane £ is a domain on the plane A, defined by 2z < 1.
It is a vertical strip bounded by lines x = £1. Denote the line x = 1 by I'. The group
G of translations of the Lobachevsky—Galilei plane £ consists of linear-fractional
transformations

az+b —
2> 2z-g e ta aa , a,be (1.1)
It preserves the measure
dx dy
doz) = T2

Matrices
a b T
g—<5 6)’ aa — bb =1,

occuring in (1.1), form the group SU(1,1;A). Denote a = « + ip, b =  + iq. The
condition a@—bb = 1 is equivalent to a® — 32 = 1, so that a® > 1, therefore o > 1 or
a < —1. Thus, the group SU(1, 1; A) consists of two connected parts. The connected
component of the identity is isomorphic just to the group G. This component consists
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of matrices g with @ > 1. For this component we retain the notation G. We can
write parameters o and [ of the matrix g € G as a« =cht u [ = sht, where t € R.
Therefore, any matrix g € G can be written as follows

g =g(t) +ic(p,q), (1.2)

o= (S0 ) o= (2, 5).

The stabilizer of the point z = 0 is the subgroup K consisting of diagonal

matrices:
_( 1+ap 0
(0 13

where

so that
L=G/K.

Let (f,h)c be the inner product in the space L*(L, do):

(f.h)e = / f(2) B(=) do(2).

The quasiregular representation U of G acts on this space: (U(g)f)(z) = f(z - g).

§ 2. Representations of the group G

In this section we describe two series of representations of the group G induced by
characters (one-dimensional representations) of "parabolic" subgroups Py n Py. The
first one P, is the stabilizer of the point 7o = 1 in I, the second one P, is obtained
by a limit passage from the stabilizer of the point v, = 1 + iy when y — oo.

The subgroup Py consists of matrices (1.2) with p = ¢, i. e. matrices h(t,q) =
g(t) +ic(q, q). Tts character wy, is defined by a complex number \:

wr(h) =M = (a+ B) .

The set G/, can be identified with the line I': to a point -, one assigns the diagonal
matrix (1.3) with p = y/2. The representation T} of G induced by wy acts in functions
¢(7) in D(I') by

Tag9)p() = ¢ (v-9) (a+B)", reC.

The stabilizer P, of the point v, consists of matrices (1.2) such that p = g+ysht.
The subgroups P, and I are isomoephic, so representations induced by characters
these subgroups are equivalent.

Let us find the limit P of P, when y — oo. We consider parameters ¢ and ¢
depending on y: t = ¢,, ¢ = @y, in such way that the following limits exist: lim¢, = ¢,
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lim g, = ¢, lim(g, + ysht,) = p. It gives t = 0. Therefore, the subgroup P., consists
of matrices
h = h(u,v) = E 4 ic(u,v), (2.1)

where F is the identity matrix of the second order. This subgroup is a commutative
normal subgroup of G, isomorphic to R?, so that its characters are

wau(h) = eMet,
where A\, u € C and h is the matrix (2.1). Any matrix (1.2) can be written as

g = h(uav) g(t)7 (22)

where
h(u,v) = E +ic(p,q)g(t) ",

so that
u=pcht—qsht, v=—psht+qcht.

So we can identify G/ P, with the subgroup of matrices ¢g(¢) and hence with R. The
representation 7T , of G induced by wy , acts in functions ¢(s) in D(R) by:

Ty,.(9)0(s) = p(3) wau(h),

where 5 and h are obtained if we decompose ¢(s) g in accordance with (2.2): g(s) g =
h g(s). Let us write g also as (2.2) then

9(s) g = {E +ig(s)c(u,v)g(s) ™'} - g(s + 1),
so that 3 = s +t, h(u,v) = E + i c(@,7), where

(@) = g(s)e(u,v)g(s)™"

= g(s)e(p, @)g(s +1) 7,
therefore,

u = pch(2s+t)—qsh(2s+1), (2.3)
v = —psh(2s+1t)+qch(2s+1).

Finally for g = g(t) + ic(p, q¢) we get

(Tri(9) @) (5) = (s + ) X, (2.5)

with % and v given by (2.3) and (2.4).
A Hermitian form (the inner product from L?(RR,ds))

(o) = / " () 2s) ds
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is invariant with respect to the pair (7} ,, T—X—ﬁ>’ i e.

(Taulg), ) = (W, T3 a9 ), (2.6)

so that T} , is unitarizable for pure imaginary A, p.
Using (2.6) we can extend T) , to the space D'(R) of distributions ¢ on R.

§ 3. Poisson and Fourier transforms, spherical functions

We need the second series from § 2.

Theorem 3.1 A non-trivial space of K-invariants in D'(R) under T\, exists
provided that X = ru, where —1 < r < 1; if so let us set r = th27, 7 € R, so
that

A=th2r-pu, 7R (3.1)

This space s one-dimensional, a basis function 6 is the delta function:
0(s) =d(s—1).

Proof. Let a function 0(s) is K-invariant under 7) ,. By (1.3) and (2.5), (2.3), (2.4)
it means:
ep(/\chZS—ushQS) 9(8) — 9(8)

for all p € R. This is equivalent to a condition that is obtained by differentiation
with respect to p at zero: (Ach2s — psh2s)6(s) =0, or (A — uth2s)0(s) = 0. The
factor in front of 6(s) has to vanish at some point s = 7. It gives (3.1). O

The representation 7}, with condition (3.1) is equivalent to that with A = 0.
Indeed, the translation operator C: (C)(s) = ¢(s + 1), intertwines T , with Tp,,
where v = p/ch27. So we can take A = 0 from the beginning. Then Theorem 3.1
claims that the representation 7j ,, 1 € C, has a K-invariant 6(s) = §(s) unique up
to a factor.

The K-invariant 6(s) = d(s) gives rise to a Poisson kernel

Pu(z,8) = (Tou(g7")0) (s), z€ L, sER,

where g is an element in G moving 0 to z, for example, the matrix

1 1 z .
gz_m(z 1)? F=rAw.
We get

Pu(z,s) = 5(5—5)6XP{“1_yx2}
= (1—x2)5(x—c)exp{,u1_yx2};
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where x = th¢&, ¢ = ths. This kernel gives rise to two transforms: the Poisson
transform P, : D(R) — C*(L) and the Fourier transform F, : D(L) — D(R)
defined respectively by:

@) = [ Besdos=v@ew{n sl e

o0

(Fuf)(s) = /E Pu(z,5) f(2) do(2)

1 > . y
- 1_62/ f(c+ly)eXp{M1_02}dy,C:ths.

They intertwine Ty, with U and U with Tj ,, respectively. These transforms are
conjugate to each other:

(PuQOaf)L = <907Fﬁf>~
The spherical function ¥, is defined as the Poisson image of the K-invariant 6:
v,=PF,0.

It follows from (3.2) that
U, (2) =6(x) e,

§ 4. Decomposition of the quasiregular representation

Theorem 4.1 The quasireqular representation U of the group G in L*(L,do)
decomposes in the direct integral of representations Ty ;,, p € R, with multiplicity
one as follows (here i = /—1 € C, the compler number). Let us assign to a
function f € D(L) the family of its Fourier components @ypve F;,f, p € R. This
correspondence is G-equivariant. There are an inverse formula:

1 [e.9]
f=5 | PPt (4.)

—00

and the Plancherel formula:
1 [e.9]
(f,h)e = 5= / (F,, f,Fiy ) dp. (4.2)

Therefore the map f — {EF;,f} can be extended to the whole space L*(L,do).

Formulas (4.1), (4.2) are obtained from corresponding formulas for the classical
Fourier transform by the change p = (1 — 22)n.

These formulas can be united by the formula decomposing the delta function
d(2) concentrated at z = 0 into spherical functions:

5(z) = - /_ T w(2) dp.

:% N
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