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� 1. Lobachevsky�Galilei plane

Let Λ be an algebra over R of dimension 2 consisting of elements z = x + iy,
x, y ∈ R with relation i2 = 0 (the algebra of dual numbers). It is not a �eld: pure
imaginary numbers iy are zero divisors. For z = x + iy, the conjugate number is
z = x− iy.

The Lobachevsky�Galilei plane L is a domain on the plane Λ, de�ned by zz < 1.
It is a vertical strip bounded by lines x = ±1. Denote the line x = 1 by Γ. The group
G of translations of the Lobachevsky�Galilei plane L consists of linear-fractional
transformations

z 7→ z · g =
az + b

bz + a
, aa− bb = 1, a, b ∈ Λ. (1.1)

It preserves the measure

dσ(z) =
dx dy

(1− x2)2
.

Matrices

g =

(
a b

b a

)
, aa− bb = 1,

occuring in (1.1), form the group SU(1, 1; Λ). Denote a = α + ip, b = β + iq. The
condition aa−bb = 1 is equivalent to α2−β2 = 1, so that α2 > 1, therefore α > 1 or
α 6 −1. Thus, the group SU(1, 1; Λ) consists of two connected parts. The connected
component of the identity is isomorphic just to the groupG. This component consists
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of matrices g with α > 1. For this component we retain the notation G. We can
write parameters α and β of the matrix g ∈ G as α = ch t è β = sh t, where t ∈ R.
Therefore, any matrix g ∈ G can be written as follows

g = g(t) + ic(p, q), (1.2)

where

g(t) =

(
ch t sh t
sh t ch t

)
, c(p, q) =

(
p q
−q −p

)
.

The stabilizer of the point z = 0 is the subgroup K consisting of diagonal
matrices:

k =

(
1 + ip 0

0 1− ip

)
, (1.3)

so that
L = G/K.

Let (f, h)L be the inner product in the space L2(L, dσ):

(f, h)L =

∫
L
f(z)h(z) dσ(z).

The quasiregular representation U of G acts on this space: (U(g)f)(z) = f(z · g).

� 2. Representations of the group G

In this section we describe two series of representations of the group G induced by
characters (one-dimensional representations) of "parabolic" subgroups P0 è P∞. The
�rst one P0 is the stabilizer of the point γ0 = 1 in Γ, the second one P∞ is obtained
by a limit passage from the stabilizer of the point γy = 1 + iy when y →∞.

The subgroup P0 consists of matrices (1.2) with p = q, i. e. matrices h(t, q) =
g(t) + ic(q, q). Its character ωλ is de�ned by a complex number λ:

ωλ(h) = eλt = (α + β)λ.

The set G/P0 can be identi�ed with the line Γ: to a point γy one assigns the diagonal
matrix (1.3) with p = y/2. The representation Tλ ofG induced by ωλ acts in functions
ϕ(γ) in D(Γ) by

Tλ(g)ϕ(γ) = ϕ (γ · g) (α + β)λ, λ ∈ C.

The stabilizer Py of the point γy consists of matrices (1.2) such that p = q+y sht.
The subgroups Py and P0 are isomoephic, so representations induced by characters
these subgroups are equivalent.

Let us �nd the limit P∞ of Py when y → ∞. We consider parameters t and q
depending on y: t = ty, q = qy, in such way that the following limits exist: lim ty = t,
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lim qy = q, lim(qy + y shty) = p. It gives t = 0. Therefore, the subgroup P∞ consists
of matrices

h = h(u, v) = E + ic(u, v), (2.1)

where E is the identity matrix of the second order. This subgroup is a commutative
normal subgroup of G, isomorphic to R2, so that its characters are

ωλ,µ(h) = eλueµv,

where λ, µ ∈ C and h is the matrix (2.1). Any matrix (1.2) can be written as

g = h(u, v) g(t), (2.2)

where

h(u, v) = E + ic(p, q)g(t)−1,

so that

u = p ch t− q sh t, v = −p sh t+ q ch t.

So we can identify G/P∞ with the subgroup of matrices g(t) and hence with R. The
representation Tλ,µ of G induced by ωλ,µ acts in functions ϕ(s) in D(R) by:

Tλ,µ(g)ϕ(s) = ϕ(s̃)ωλ,µ(h̃),

where s̃ and h̃ are obtained if we decompose g(s) g in accordance with (2.2): g(s) g =

h̃ g(s̃). Let us write g also as (2.2) then

g(s) g = {E + ig(s)c(u, v)g(s)−1} · g(s+ t),

so that s̃ = s+ t, h̃(u, v) = E + i c(ũ, ṽ), where

c(ũ, ṽ) = g(s)c(u, v)g(s)−1

= g(s)c(p, q)g(s+ t)−1,

therefore,

ũ = p ch(2s+ t)− q sh(2s+ t), (2.3)

ṽ = −p sh(2s+ t) + q ch(2s+ t). (2.4)

Finally for g = g(t) + ic(p, q) we get

(Tλ,µ(g)ϕ) (s) = ϕ(s+ t) eλũ+µṽ, (2.5)

with ũ and ṽ given by (2.3) and (2.4).
A Hermitian form (the inner product from L2(R, ds))

〈ψ, ϕ〉 =

∫ ∞
−∞

ψ(s)ϕ(s) ds
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is invariant with respect to the pair (Tλ,µ, T−λ,−µ), i. e.

〈Tλ,µ(g)ψ, ϕ〉 = 〈ψ, T−λ,−µ(g−1)ϕ〉, (2.6)

so that Tλ,µ is unitarizable for pure imaginary λ, µ.
Using (2.6) we can extend Tλ,µ to the space D′(R) of distributions ψ on R.

� 3. Poisson and Fourier transforms, spherical functions

We need the second series from � 2.

Theorem 3.1 A non-trivial space of K-invariants in D′(R) under Tλ,µ exists
provided that λ = rµ, where −1 < r < 1; if so let us set r = th 2τ , τ ∈ R, so
that

λ = th 2τ · µ, τ ∈ R. (3.1)

This space is one-dimensional, a basis function θ is the delta function:

θ(s) = δ(s− τ).

Proof. Let a function θ(s) is K-invariant under Tλ,µ. By (1.3) and (2.5), (2.3), (2.4)
it means:

ep(λ ch 2s−µ sh 2s) θ(s) = θ(s)

for all p ∈ R. This is equivalent to a condition that is obtained by di�erentiation
with respect to p at zero: (λ ch 2s− µ sh 2s) θ(s) = 0, or (λ− µ th 2s) θ(s) = 0. The
factor in front of θ(s) has to vanish at some point s = τ . It gives (3.1). �

The representation Tλ,µ with condition (3.1) is equivalent to that with λ = 0.
Indeed, the translation operator C: (Cϕ)(s) = ϕ(s + τ), intertwines Tλ,µ with T0,ν ,
where ν = µ/ch 2τ . So we can take λ = 0 from the beginning. Then Theorem 3.1
claims that the representation T0,µ, µ ∈ C, has a K-invariant θ(s) = δ(s) unique up
to a factor.

The K-invariant θ(s) = δ(s) gives rise to a Poisson kernel

Pµ(z, s) =
(
T0,µ(g−1)θ

)
(s), z ∈ L, s ∈ R,

where g is an element in G moving 0 to z, for example, the matrix

gz =
1√

1− x2

(
1 z
z 1

)
, z = x+ iy.

We get

Pµ(z, s) = δ(ξ − s) exp

{
µ

y

1− x2

}
= (1− x2) δ(x− c) exp

{
µ

y

1− x2

}
,
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where x = th ξ, c = th s. This kernel gives rise to two transforms: the Poisson
transform Pµ : D(R) → C∞(L) and the Fourier transform Fµ : D(L) → D(R)
de�ned respectively by:

(Pµ ϕ) (z) =

∫ ∞
−∞

Pµ(z, s)ϕ(s) ds = ϕ(ξ) exp

{
µ

y

1− x2

}
, (3.2)

(Fµ f) (s) =

∫
L
Pµ(z, s) f(z) dσ(z)

=
1

1− c2

∫ ∞
−∞

f(c+ iy) exp

{
µ

y

1− c2

}
dy, c = th s.

They intertwine T0,−µ with U and U with T0,µ, respectively. These transforms are
conjugate to each other:

(Pµ ϕ, f)L = 〈ϕ, Fµf〉.
The spherical function Ψµ is de�ned as the Poisson image of the K-invariant θ:

Ψµ = Pµ θ.

It follows from (3.2) that
Ψµ(z) = δ(x) eµy.

� 4. Decomposition of the quasiregular representation

Theorem 4.1 The quasiregular representation U of the group G in L2(L, dσ)
decomposes in the direct integral of representations T0,iρ, ρ ∈ R, with multiplicity
one as follows (here i =

√
−1 ∈ C, the complex number). Let us assign to a

function f ∈ D(L) the family of its Fourier components Ôóðüå Fiρf , ρ ∈ R. This
correspondence is G-equivariant. There are an inverse formula:

f =
1

2π

∫ ∞
−∞

P−iρ Fiρ f dρ, (4.1)

and the Plancherel formula:

(f, h)L =
1

2π

∫ ∞
−∞
〈Fiρ f, Fiρ h〉 dρ. (4.2)

Therefore the map f 7→ {Fiρf} can be extended to the whole space L2(L, dσ).

Formulas (4.1), (4.2) are obtained from corresponding formulas for the classical
Fourier transform by the change ρ = (1− x2)η.

These formulas can be united by the formula decomposing the delta function
δ(z) concentrated at z = 0 into spherical functions:

δ(z) =
1

2π

∫ ∞
−∞

Ψiρ(z) dρ.
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