MSC 43A85

Harmonic analysis on the Lobachevsky–Galilei plane ¹

© Yu. V. Dunin

Derzhavin Tambov State University, Tambov, Russia

Harmonic analysis on the Lobachevsky–Galilei plane is constructed Keywords: Lobachevsky plane, dual numbers, Poisson and Fourier transforms, spherical functions, Plancherel formula

§ 1. Lobachevsky-Galilei plane

Let Λ be an algebra over \mathbb{R} of dimension 2 consisting of elements z=x+iy, $x,y\in\mathbb{R}$ with relation $i^2=0$ (the algebra of dual numbers). It is not a field: pure imaginary numbers iy are zero divisors. For z=x+iy, the conjugate number is $\overline{z}=x-iy$.

The Lobachevsky–Galilei plane \mathcal{L} is a domain on the plane Λ , defined by $z\overline{z} < 1$. It is a vertical strip bounded by lines $x = \pm 1$. Denote the line x = 1 by Γ . The group G of translations of the Lobachevsky–Galilei plane \mathcal{L} consists of linear-fractional transformations

$$z \mapsto z \cdot g = \frac{az + \overline{b}}{bz + \overline{a}}, \quad a\overline{a} - b\overline{b} = 1, \quad a, b \in \Lambda.$$
 (1.1)

It preserves the measure

$$d\sigma(z) = \frac{dx \, dy}{(1 - x^2)^2}.$$

Matrices

$$g = \begin{pmatrix} a & b \\ \overline{b} & \overline{a} \end{pmatrix}, \quad a\overline{a} - b\overline{b} = 1,$$

occurring in (1.1), form the group SU(1,1; Λ). Denote $a = \alpha + ip$, $b = \beta + iq$. The condition $a\overline{a} - b\overline{b} = 1$ is equivalent to $\alpha^2 - \beta^2 = 1$, so that $\alpha^2 \geqslant 1$, therefore $\alpha \geqslant 1$ or $\alpha \leqslant -1$. Thus, the group SU(1,1; Λ) consists of two connected parts. The connected component of the identity is isomorphic just to the group G. This component consists

 $^{^1\}mathrm{Supported}$ by the Russian Foundation for Basic Research (RFBR): grant 09-01-00325-a, Sci. Progr. "Development of Scientific Potential of Higher School": project 1.1.2/9191, Fed. Object Progr. 14.740.11.0349 and Templan 1.5.07

of matrices g with $\alpha \geqslant 1$. For this component we retain the notation G. We can write parameters α and β of the matrix $g \in G$ as $\alpha = \operatorname{ch} t$ u $\beta = \operatorname{sh} t$, where $t \in \mathbb{R}$. Therefore, any matrix $g \in G$ can be written as follows

$$g = g(t) + ic(p,q), \tag{1.2}$$

where

$$g(t) = \begin{pmatrix} \operatorname{ch} t & \operatorname{sh} t \\ \operatorname{sh} t & \operatorname{ch} t \end{pmatrix}, \quad c(p,q) = \begin{pmatrix} p & q \\ -q & -p \end{pmatrix}.$$

The stabilizer of the point z=0 is the subgroup K consisting of diagonal matrices:

$$k = \begin{pmatrix} 1+ip & 0\\ 0 & 1-ip \end{pmatrix}, \tag{1.3}$$

so that

$$\mathcal{L} = G/K$$
.

Let $(f,h)_{\mathcal{L}}$ be the inner product in the space $L^2(\mathcal{L},d\sigma)$:

$$(f,h)_{\mathcal{L}} = \int_{\mathcal{L}} f(z) \, \overline{h(z)} \, d\sigma(z).$$

The quasiregular representation U of G acts on this space: $(U(g)f)(z) = f(z \cdot g)$.

§ 2. Representations of the group G

In this section we describe two series of representations of the group G induced by characters (one-dimensional representations) of "parabolic" subgroups P_0 in P_{∞} . The first one P_0 is the stabilizer of the point $\gamma_0 = 1$ in Γ , the second one P_{∞} is obtained by a limit passage from the stabilizer of the point $\gamma_y = 1 + iy$ when $y \to \infty$.

The subgroup P_0 consists of matrices (1.2) with p = q, i. e. matrices h(t, q) = g(t) + ic(q, q). Its character ω_{λ} is defined by a complex number λ :

$$\omega_{\lambda}(h) = e^{\lambda t} = (\alpha + \beta)^{\lambda}.$$

The set G/P_0 can be identified with the line Γ : to a point γ_y one assigns the diagonal matrix (1.3) with p = y/2. The representation T_{λ} of G induced by ω_{λ} acts in functions $\varphi(\gamma)$ in $\mathcal{D}(\Gamma)$ by

$$T_{\lambda}(g)\varphi(\gamma) = \varphi(\gamma \cdot g)(\alpha + \beta)^{\lambda}, \quad \lambda \in \mathbb{C}.$$

The stabilizer P_y of the point γ_y consists of matrices (1.2) such that $p = q + y \sinh t$. The subgroups P_y and P_0 are isomorphic, so representations induced by characters these subgroups are equivalent.

Let us find the limit P_{∞} of P_y when $y \to \infty$. We consider parameters t and q depending on y: $t = t_y$, $q = q_y$, in such way that the following limits exist: $\lim t_y = t$,

 $\lim q_y = q$, $\lim (q_y + y \operatorname{sh} t_y) = p$. It gives t = 0. Therefore, the subgroup P_{∞} consists of matrices

$$h = h(u, v) = E + ic(u, v),$$
 (2.1)

where E is the identity matrix of the second order. This subgroup is a commutative normal subgroup of G, isomorphic to \mathbb{R}^2 , so that its characters are

$$\omega_{\lambda,\mu}(h) = e^{\lambda u} e^{\mu v},$$

where $\lambda, \mu \in \mathbb{C}$ and h is the matrix (2.1). Any matrix (1.2) can be written as

$$g = h(u, v) g(t), \tag{2.2}$$

where

$$h(u,v) = E + ic(p,q)g(t)^{-1},$$

so that

$$u = p \operatorname{ch} t - q \operatorname{sh} t, \quad v = -p \operatorname{sh} t + q \operatorname{ch} t.$$

So we can identify G/P_{∞} with the subgroup of matrices g(t) and hence with \mathbb{R} . The representation $T_{\lambda,\mu}$ of G induced by $\omega_{\lambda,\mu}$ acts in functions $\varphi(s)$ in $\mathcal{D}(\mathbb{R})$ by:

$$T_{\lambda,\mu}(g)\varphi(s) = \varphi(\widetilde{s})\,\omega_{\lambda,\mu}(\widetilde{h}),$$

where \widetilde{s} and \widetilde{h} are obtained if we decompose g(s) g in accordance with (2.2): g(s) $g = \widetilde{h}$ $q(\widetilde{s})$. Let us write g also as (2.2) then

$$g(s) g = \{E + ig(s)c(u, v)g(s)^{-1}\} \cdot g(s+t),$$

so that $\widetilde{s} = s + t$, $\widetilde{h}(u, v) = E + i c(\widetilde{u}, \widetilde{v})$, where

$$c(\widetilde{u}, \widetilde{v}) = g(s)c(u, v)g(s)^{-1}$$

= $g(s)c(p, q)g(s + t)^{-1}$,

therefore,

$$\widetilde{u} = p \operatorname{ch}(2s+t) - q \operatorname{sh}(2s+t), \tag{2.3}$$

$$\widetilde{v} = -p \operatorname{sh}(2s+t) + q \operatorname{ch}(2s+t). \tag{2.4}$$

Finally for g = g(t) + ic(p, q) we get

$$(T_{\lambda,\mu}(g)\,\varphi)\,(s) = \varphi(s+t)\,e^{\lambda\widetilde{u}+\mu\widetilde{v}},\tag{2.5}$$

with \widetilde{u} and \widetilde{v} given by (2.3) and (2.4).

A Hermitian form (the inner product from $L^2(\mathbb{R}, ds)$)

$$\langle \psi, \varphi \rangle = \int_{-\infty}^{\infty} \psi(s) \overline{\varphi(s)} \, ds$$

is invariant with respect to the pair $(T_{\lambda,\mu}, T_{-\overline{\lambda},-\overline{\mu}})$, i. e.

$$\langle T_{\lambda,\mu}(g)\psi,\varphi\rangle = \langle \psi, T_{-\overline{\lambda}-\overline{\mu}}(g^{-1})\varphi\rangle,$$
 (2.6)

so that $T_{\lambda,\mu}$ is unitarizable for pure imaginary λ,μ .

Using (2.6) we can extend $T_{\lambda,\mu}$ to the space $\mathcal{D}'(\mathbb{R})$ of distributions ψ on \mathbb{R} .

§ 3. Poisson and Fourier transforms, spherical functions

We need the second series from § 2.

Theorem 3.1 A non-trivial space of K-invariants in $\mathcal{D}'(\mathbb{R})$ under $T_{\lambda,\mu}$ exists provided that $\lambda = r\mu$, where -1 < r < 1; if so let us set $r = \operatorname{th} 2\tau$, $\tau \in \mathbb{R}$, so that

$$\lambda = \operatorname{th} 2\tau \cdot \mu, \quad \tau \in \mathbb{R}. \tag{3.1}$$

This space is one-dimensional, a basis function θ is the delta function:

$$\theta(s) = \delta(s - \tau).$$

Proof. Let a function $\theta(s)$ is K-invariant under $T_{\lambda,\mu}$. By (1.3) and (2.5), (2.3), (2.4) it means:

$$e^{p(\lambda \operatorname{ch} 2s - \mu \operatorname{sh} 2s)} \theta(s) = \theta(s)$$

for all $p \in \mathbb{R}$. This is equivalent to a condition that is obtained by differentiation with respect to p at zero: $(\lambda \operatorname{ch} 2s - \mu \operatorname{sh} 2s) \theta(s) = 0$, or $(\lambda - \mu \operatorname{th} 2s) \theta(s) = 0$. The factor in front of $\theta(s)$ has to vanish at some point $s = \tau$. It gives (3.1).

The representation $T_{\lambda,\mu}$ with condition (3.1) is equivalent to that with $\lambda = 0$. Indeed, the translation operator C: $(C\varphi)(s) = \varphi(s+\tau)$, intertwines $T_{\lambda,\mu}$ with $T_{0,\nu}$, where $\nu = \mu/\text{ch } 2\tau$. So we can take $\lambda = 0$ from the beginning. Then Theorem 3.1 claims that the representation $T_{0,\mu}$, $\mu \in \mathbb{C}$, has a K-invariant $\theta(s) = \delta(s)$ unique up to a factor.

The K-invariant $\theta(s) = \delta(s)$ gives rise to a Poisson kernel

$$P_{\mu}(z,s) = \left(T_{0,\mu}(g^{-1})\theta\right)(s), \quad z \in \mathcal{L}, \quad s \in \mathbb{R},$$

where g is an element in G moving 0 to z, for example, the matrix

$$g_z = \frac{1}{\sqrt{1-x^2}} \begin{pmatrix} 1 & \overline{z} \\ z & 1 \end{pmatrix}, \quad z = x + iy.$$

We get

$$P_{\mu}(z,s) = \delta(\xi - s) \exp\left\{\mu \frac{y}{1 - x^2}\right\}$$
$$= (1 - x^2) \delta(x - c) \exp\left\{\mu \frac{y}{1 - x^2}\right\},$$

where $x = \text{th } \xi$, c = th s. This kernel gives rise to two transforms: the *Poisson* transform $P_{\mu} : \mathcal{D}(\mathbb{R}) \to C^{\infty}(\mathcal{L})$ and the Fourier transform $F_{\mu} : \mathcal{D}(\mathcal{L}) \to \mathcal{D}(\mathbb{R})$ defined respectively by:

$$(P_{\mu}\varphi)(z) = \int_{-\infty}^{\infty} P_{\mu}(z,s) \varphi(s) ds = \varphi(\xi) \exp\left\{\mu \frac{y}{1-x^{2}}\right\}, \qquad (3.2)$$

$$(F_{\mu}f)(s) = \int_{\mathcal{L}} P_{\mu}(z,s) f(z) d\sigma(z)$$

$$= \frac{1}{1-c^{2}} \int_{-\infty}^{\infty} f(c+iy) \exp\left\{\mu \frac{y}{1-c^{2}}\right\} dy, c = \text{th } s.$$

They intertwine $T_{0,-\mu}$ with U and U with $T_{0,\mu}$, respectively. These transforms are conjugate to each other:

$$(P_{\mu}\,\varphi,f)_{\mathcal{L}} = \langle \varphi, F_{\overline{\mu}}f \rangle.$$

The spherical function Ψ_{μ} is defined as the Poisson image of the K-invariant θ :

$$\Psi_{\mu} = P_{\mu} \theta.$$

It follows from (3.2) that

$$\Psi_{\mu}(z) = \delta(x) e^{\mu y}.$$

§ 4. Decomposition of the quasiregular representation

Theorem 4.1 The quasiregular representation U of the group G in $L^2(\mathcal{L}, d\sigma)$ decomposes in the direct integral of representations $T_{0,i\rho}$, $\rho \in \mathbb{R}$, with multiplicity one as follows (here $i = \sqrt{-1} \in \mathbb{C}$, the complex number). Let us assign to a function $f \in \mathcal{D}(\mathcal{L})$ the family of its Fourier components $\Phi ypbe F_{i\rho}f$, $\rho \in \mathbb{R}$. This correspondence is G-equivariant. There are an inverse formula:

$$f = \frac{1}{2\pi} \int_{-\infty}^{\infty} P_{-i\rho} F_{i\rho} f d\rho, \qquad (4.1)$$

and the Plancherel formula:

$$(f,h)_{\mathcal{L}} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \langle F_{i\rho} f, F_{i\rho} h \rangle d\rho. \tag{4.2}$$

Therefore the map $f \mapsto \{F_{i\rho}f\}$ can be extended to the whole space $L^2(\mathcal{L}, d\sigma)$.

Formulas (4.1), (4.2) are obtained from corresponding formulas for the classical Fourier transform by the change $\rho = (1 - x^2)\eta$.

These formulas can be united by the formula decomposing the delta function $\delta(z)$ concentrated at z=0 into spherical functions:

$$\delta(z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Psi_{i\rho}(z) \, d\rho.$$