Type of von Neumann algebras generated by regular representations of infinite dimensional groups

A.V.Kosyak (Kiev) and R.Zekri (Marseille) Institute of Mathematics of Ukraine, 252601 Kiev, Ukraine e-mail: mathkiev@imat.gluk.apc.org

Let us consider (see [1]) an analogue of the right and the left regular representation of the group $B_0^{\infty} = \lim_{n \to \infty} B(n, \mathbf{R})$ of finite upper-triangular matrices of infinite order: $T^{R,b}$, $T^{L,b} : B_0^{\infty} \to U(H_b = L_2(B^{\infty}, d\mu_b))$,

$$(T_t^{R,b}f)(x) = (d\mu_b(xt)/d\mu_b(x))^{1/2}f(xt),$$

$$(T_s^{L,b}f)(x) = (d\mu_b(s^{-1}x)/d\mu_b(x))^{1/2}f(s^{-1}x),$$

corresponding to a B_0^{∞} – quasi-invariant measure μ_b on the group B^{∞} of all upper triangular matrices, where μ_b is defined as follows:

$$d\mu_b(x) = \bigotimes_{k < n} (b_{kn}/\pi)^{1/2} \exp(-b_{kn} x_{kn}^2) dx_{kn} = \bigotimes_{k < n} d\mu_{b_{kn}}(x_{kn})$$

and $b = (b_{kn})_{k < n}$ is a set of positive numbers.

Let us denote by R and L the right and the left action of the group B_0^{∞} on $B^{\infty}: R_s(t) = ts^{-1}$, $L_s(t) = st, s \in B_0^{\infty}, t \in B^{\infty}$.

 $\begin{array}{l} st,s\in B_0^\infty\,,t\in B^\infty\,.\\ \text{Let }\mathfrak{A}^{R,b}=(T_t^{R,b}\mid t\in B_0^\infty)^{\prime\prime}\text{ and }\mathfrak{A}^{L,b}=(T_s^{L,b}\mid s\in B_0^\infty)^{\prime\prime}. \end{array}$

Theorem 1 [1] The von Neumann algebra $\mathfrak{A}^{R,b}$ is type I_{∞} factor if and only if $\mu_b^{L_s} \perp \mu_b \ \forall s \in B_0^{\infty}$.

Let now assume that $\mu_b(x^{-1}) \sim \mu_b(x)$ then all left actions are admissible for measure μ_b i.e. $\mu_b^{L_s} \sim \mu_b \ \forall s \in B_0^{\infty}$. In this case the canonical conjugation J is $(Jf)(x) = (d\mu_b(x^{-1})/d\mu_b(x))^{1/2}\overline{f}(x^{-1})$ and we have $JT_t^{R,b}J = T_t^{L,b}$, $t \in B_0^{\infty}$.

Theorem 2 If $\mu_b(x^{-1}) \sim \mu_b(x)$ then $(\mathfrak{A}^{R,b})' = \mathfrak{A}^{L,b}$.

Theorem 3 If $\mu_b(x^{-1}) \sim \mu_b(x)$ then the von Neumann algebra $\mathfrak{A}^{L,b}$ is factor.

We shall prove that $M \cap M' = \{\lambda \mathbf{I} \mid \lambda \in \mathbf{C}^1\}$ where $M = \mathfrak{A}^{L,b}$. Since $M' = (\mathfrak{A}^{L,b})' = \mathfrak{A}^{R,b}$ it is equivalent to the fact that the representation

$$B_0^{\infty} \times B_0^{\infty} \ni (t,s) \to T_t^{R,b} T_s^{L,b} \in U(H_b)$$

is irreducible.

Let us denote $T(G) = \{T_t \mid t \in G\},\$

$$B(p) = B(p, \mathbf{R}), \ B^{p} = \{t \in B^{\infty} \mid t = I + \sum_{k < n, k \le p} t_{kn} E_{kn}\}, \ B^{p}_{0} = B^{p} \bigcap B^{\infty}_{0},$$

$$B_{p} = \{t \in B^{\infty} \mid t = I + \sum_{p < k < n} t_{kn} E_{kn}\},$$

$$\mu^{p}_{b}(x) = \bigotimes_{k < n, k \le p} \mu_{b_{kn}}(x_{kn}),$$

$$\mu_{b,p}(x) = \bigotimes_{p < k < n} \mu_{b_{kn}}(x_{kn}),$$

$$H^{p}_{b} = L_{2}(B^{p}, d\mu^{p}_{b}), \ H_{b,p} = L_{2}(B_{p}, d\mu_{b,p}),$$

then
$$H_b = H_b^p \otimes H_{b,p}$$
. Since $B_0^{\infty} = \bigcup_{p=2}^{\infty} B(p) = \bigcup_{p=2}^{\infty} B^p$ we have
$$M \bigcap M' = \mathfrak{A}^{L,b} \bigcap (\mathfrak{A}^{L,b})' = (\mathfrak{A}^{R,b} \bigcup \mathfrak{A}^{L,b})' = (T^{R,b}(B_0^{\infty}) \bigcup T^{L,b}(B_0^{\infty}))' = (\bigcup_{p,r=2}^{\infty} (T^{R,b}(B^p) \bigcup T^{L,b}(B(r))))' \subset (\bigcup_{p=2}^{\infty} (T^{R,b}(B^p) \bigcup T^{L,b}(B(p))) \otimes \mathbf{I}_{H_{b,p}})' = \bigcap_{p=2}^{\infty} (T^{R,b}(B^p) \bigcup T^{L,b}(B(p)))' \otimes B(H_{b,p}) = \bigcap_{p=2}^{\infty} ((T^{L,b}(B^p))'' \bigcap (T^{L,b}(B(p)))') \otimes B(H_{b,p}) = \bigcap_{p=2}^{\infty} (T^{L,b}(\mathbf{Z}(B_0^p)))'' \otimes B(H_{b,p}) = \{\lambda \mathbf{I} \mid \lambda \in \mathbf{C}^1\},$$

where $\mathbf{Z}(B_0^p)$ is the center of the group B_0^p :

$$\mathbf{Z}(B_0^p) = \{ t \in B_0^{\infty} \mid t = I + \sum_{n \ge p} t_{1n} E_{1n} \}.$$

References

[1] A.V.Kosyak, Criteria for irreducibility and equivalence of regular Gaussian representations of group of finite upper-triangular matrices of infinite order, Selecta. Math. Soviet.11 (1992), 241-291.