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Let us consider ( see [1]) an analogue of the right and the left regular representation of the group
By = limB(n,R) of finite upper-triangular matrices of infinite order: TR? TIL:t . B — U(H, =

Ly(B*, dps)),
(T F)(2) = (dup(et)/dps())'* f(at),
(TF* f)(x) = (dps(s™ ) [dpa(2))* (57 ),
corresponding to a B§°— quasi-invariant measure y; on the group B* of all upper triangular matrices,

where i, is defined as follows:

dpy(2) = @k<n(bkn/™)/? exp(—brnin)dTkn = Ok<ndpsy, (Tkn)

and b = (bgn)k<n is a set of positive numbers.

Let us denote by R and L the right and the left action of the group B§® on B® : R,(t) =ts™', L.(t) =
st,s € B§°,t € B,

Let % ®* = (T2 | t € B)" and % “° = (TF* | s € BF°)".

Theorem 1 [1] The von Neumann algebra 2 Rb s type 1o factor if and only if,u{" L pp Vs € BE®.

Let now assume that py(z~') ~ py(z) then all left actions are admissible for measure p; i.e. pyr ~
py ¥s € BS. In this case the canonical conjugation J is (Jf)(z) = (dus(z™")/dps(z))/?f(z~") and we
have JT2'J = Tf"b, t € By°.

Theorem 2 If py(z7) ~ py(z) then (A Rby — o Lb,

b

Theorem 3 If us(z~1) ~ py(z) then the von Neumann algebra 2 Lt is factor.

We shall prove that M (M’ = {M | A € C'} where M = % L*. Since M’ = (A ©?)y = A B it is
equivalent to the fact that the representation

B x BL 3 (t.s) — T/ TEY € U(Hy)

is irreducible.
Let us denote T(G) = {T; | t € G},

B(p) = B(p,R), BP = {t € B® |t=1+ Y tinEin}, B} = B[ By,
k<n k<p

B,={teB® |t=I+ Y tinEa},
p<k<n
H5(2) = @k<n k<phbyn (Tkn),
po,p(Z) = ®p<k<nibyn(Thn),
HY = Lo(B?, dj), Hup = La(Bp,dyusp),
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then Hy = H} ® Hy . Since B = J;2, B(p) = Upe, B we have
Mli — 03 L.b ﬂ(m L,b)l = (Ql Rb Um L,b)f =

(@B JTHB) = (| (@™ BT (B() ¢

p,r=2

e

(@™ B | JTHH(BR) ©1n,,) =

2

(@™ (B7) | JT*(B(p))) ® B(Hy,) =

p=2

8 =
1

oo

N (@4 (B7)" (YT**(B®))') ® B(Hs,p) =

p=2

() (T™*(Z(BE)))" ® B(H,,p) =

p=2
{AI| e C'},
where Z(B}) is the center of the group B} :

Z(BY)={t€ BY |[t=1+) tinEin}.
n2p
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