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Let X = G/H be a compact homogeneous space; an invariant algebra on X is a closed subalgebra
of C(X) which is invariant with respect to the action of G on X. For example, the restiction to the
skeleton (Shilov boundary) X of the algebra of analytic and continuous up to the boundary functions
in a symmetric domain is an invariant algebra on X. There are many examples of this kind, and the
question is if any nontrivial invariant algebra may be realized as an algebra of analytic (somewhere)
functions.

The case of bi-invariant algebras on compact Lie groups is the most investigated one. Algebraic and
topological properties of a group restricts the structure of invariant algebras on it. For example, Rider
[15] proved that if a compact Lie group G admits an invariant Dirichlet algebra (this means that real
parts of functions in A are dense in the space of all real-vaued continuous functions) then G is abelian
and connected. Wolf [18] and Gangolli [2] showed that every uniformly closed bi-invariant algebra on
a semisimple group is self-adjoint (a function algebra A is called self-adjoint if A = A, where the bar
denotes the complex conjugation; the algebra A is called antisymmetric if AN A contains only constant
functions). Gichev [4] proved that a bi-invariant algebra A on a group G is antisymmetric if and only
if the Haar measure of G is a multiplicative functional on A; Rosenberg [16] gave a characterization of
bi-invariant antisymmetric algebras on compact groups in terms of harmonic analysis.

The case of invariant algebras on general homogeneous spaces G/H is not well-understood even for
compact . The hypothesis is that, for every nontrivial G-invariant algebra on G/H, there is a G-
invariant foliation with leaves of the type G/H such that the restriction of A to each leaf is some algebra
of boundary values of holomorphic functions on a domain in G® /H® whose skeleton is G/H. Such
domains appears in a paper of Gel’fand and Gindikin [3]. They considered a real semisimple Lie group G
as a boundary of a certain complex domain in G€ . Ol’shanskii [13] proved that these complex domains
are interiors of subsemigroups of G® of the form G exp(iC'), where C' is any Ad(G)-invariant cone in the
Lie algebra of G.

In this article we consider invariant algebras on spheres S™; they are the simplest examples of com-
pact homogeneous spaces. Montgomery, Samelson and Borel (see [14]) found all realizations of S™ as a
homogeneous space G/H, where G is a compact group, H is its closed subgroup (the isotropy group of
some point). Their results are summarized in the following table:

¢ H G/H
(1) SO(n + 1) SO(n) s
(2) U(n) U(n—1) San=1
(3) SU(n + 1) SU(n) gn+1
(4) Sp(n) Sp(n—1) iy
(5) Sp(n) x U(1) Sp(n—1)x U(1) S*-1
(6) Sp(n) x Sp(1) Sp(n—1) x Sp(1) &1
(7) Sping Spin; gis
(8) Spin, Go 5t
9) Gs SU(3) 56

Invariant algebras on S* = SO(2) = U(1) are in one-to-one correspondence with subsemigroups of
the group Z of integers [17]. K. de Leeuw and H. Mirkil [11] showed that there are only three SO(n + 1)-
invariant algebras on S™ (n > 1): the algebra C of constant functions, the algebra of even functions and
C(S™). Note that they are self-adjoint. W. Rudin and A. Nagel characterized U(n)-invariant algebras on
S?n=1 (17, [12]); J. Kane [9] described their maximal ideal spaces and realized almost all antisymmetric
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U(n)-invariant algebras as algebras of holomorphic functions. We study invariant algebras on spheres in
the remaining cases. Main results are stated in Theorems 1-3.

Theorem 1. All invariant algebras in the cases (6)-(9) are self-adjoint. If n > 2 then SU(n)-
invariant algebras on S**~! are U(n)-invariant. Every Sp(n) x U(1)-invariant antisymmetric algebra on
S4n=1 js a subalgebra of some U(2n)-invariant antisymmetric algebra.

This theorem is proved in Propositions 2-7 (Propositions 2-4 are proved in Section 1, Proposition 5
— in Section 2, and Propositions 6-7 — in Section 3).

As a corollary of Propositions 5-7 we have a classification of invariant algebras on P"C and P™H
(groups acting transitively on projective spaces were classified by Onishchik [14]). All these algebras are
self-adjoint.

The case (4) is most complicated because the decomposition of the quasi-regular representation con-
tains irreducible representations with a multiplicity > 1 ([10]). So in Section 4 we consider only the
case n = 1 and only a family A, of antisymmetric Sp(1)-invariant algebras of even functions on the
three-dimensional sphere depending on a continuous parameter. These algebras are characterized by

Theorem 2. There are invariant CR-conditions on S such that A, consists of all CR-functions.
For every nonstandard invariant CR-conditions on S® there exists @ > 0 such that A, is isomorphic to
the algebra of all CR-functions; in particular, each CR-function f is even.

These algebras differ from the invariant algebras on U(n)/U(n — 1). Every antisymmetric containing
constant functions invariant algebra A on U(nr)/U(n — 1) has the following properties:

a) A admits an invariant Z-grading, i. e. A =&} ¢z, Ak, such that A;A; C Aiy; where Z is the
set of non-negative integers and A; is an invariant (non-trivial) subspace for each ;

b) a linear functional corresponding to the normalized invariant measure is a multiplicative functional
on A;

¢) the group U(n) have a fixed point in the maximal ideal space of A.

An invariant Z,-grading is given by numbers {p — ¢ : H(p,q) C A}. The properties b) and ¢)
follow from [5]-(7]: every invariant algebra on U(n)/U(n — 1) is an averaging of a bi-invariant algebra
on U(n). By the Theorem 1 every antisymmetric containing constant functions invariant algebra A on
Sp(n) x U(1)/Sp(n — 1) x U(1) also has these properties.

Theorem 3. A, is an antisymmetric algebra isomorphic to the algebra of all analylic in the relative
interior and continuous up to the boundary functions on the set

Z1,29, 23 663:2212-1- 222+223251+2c¢2,zz—42123=1
2

which coincides with its mazimal ideal space M,. For A, each of the properties a), b), and ¢) doesn’t
occur.

In this paper invariant algebras on the spheres are studied by the following way. Since G is compact
every invariant subspace X of C(S™).is uniquely determined by minimal ones included to X. They
are finite dimensional complex linear spaces of polynomials. The action of G extends to the action of
the complexification G€ in these spaces (representations of G, G® and tangent representations of the
corresponding Lie algebras will be denoted by the same letter). We find minimal invariant spaces and
the corresponding highest weights of g© . Since any group G in the table above is naturally embedded to
SO(n) or U(n) and the problem for these two groups is solved it is sufficient to find the decompositions of
minimal SO(n)- or U(n)-invariant spaces. We find the highest vectors of.the irreducible representations
of G, i. e. the polynomials which are annihilated by ny (¢9® = t @ ny ® n_, ny is the nilpotent
subalgebra of g corresponding to positive roots, ¢ is the Cartan subalgebra). To prove coincidence of
minimal invariant spaces with SO(n)-invariant spaces we use the Weyl formula for the dimension d) of
the irreducible representation of the Lie algebra g with the highest weight A:

Ay
dy = (<——+1) (1)
}:IO <68 >

where § is the half-sum of positive roots of g. Finally, we have to describe invariant subspaces which are
closed under the multiplication; the complete solution to this problem is given in the cases (6)-(9), in the
case (3) for n > 1 and a partial one in the case (5). In the cases (5)—(7) we use the Peter-Weyl theorem,
the usual scalar product will be denoted by ( , ).
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We finish this introductionary part with the following remark. The problem of the description of all
self-adjoint algebras has a geometrical interpretation.

Proposition 1. A function algebra A is a self-adjoint G-invariant algebra on a homogeneous space
M = G/H, G is compact, H is ils closed subgroup, if and only if there exists a homogeneous space M’
and a continuous equivariant mapping ©: M — M’ such that A= C(M') o .

Proof.  Set & ~ y if f(z) = f(y) for all f € A. Clearly, this is a G-invariant equivalence and A
separates its classes. Hence M’ = M/~ is a homogeneous space of G and A may be identified with C'(M")
by the Stone—Weierstrass theorem.

Corollary. Self-adjoint algebras on M are in one-to-one correspondence with closed subgroups of G
which include H.

We don’t consider the geometrical problem of a description of all closed subgroups of a compact Lie
group G which include a closed subgroup H but we receive a solution of this problem in the cases (5)-(9)
as a consequence of the description of spectrums of self-adjoint invariant algebras.

1 Exceptional spheres

Let Oj be the space of homogeneous polynomials of degree k on S”~! and H} be its subspace of harmonic
polynomials. The dimension of the space O is equal to (n — 1+ k)!/(n — 1)'k!. Since O = Ok—_2 ® Hj
([17]), the dimension of the space Hy is (n— 2+ 2k)!/(n — 2)'k!. Let p be the representation of GL(n, R)
in Ok, p(g)p(z) = p(zg). The tangent representation of gl(n,R) is defined by p(e;;) = z;0/0z; where e;;
is a matrix which element (7, 7) is 1 and other elements are 0. The restriction of this representation to
SO(n) is irreducible in Hy. The spaces Hj are invariant because SO(n) commutes with the Laplacian.
The Lie algebra so(n, C) consists of all skew-symmetric matrices.

0 -ut -v!
It is convenient to realize so(2m + 1,C) as the set of matrices of the form | V X ¥i ;
v z =Xt

where X is arbitrary, Y and Z are skew-symmetric m x m matrices, U and V' are m x 1 vector-columns.
This realization is obtained by the reduction (via the change of variables) of the usual quadratic form in

L0 0
C?*™+! to the form defined by the matrix ( 0 0 I, |,where I, is the identity m x m matrix. In
DTN

the new coordinates a function f is harmonic if and only if (8/8z% + 23 '~ 8/02i410Tm4is1)f = 0.
There is an embedding of g, to so(7,C) as the set of matrices

0 —w1vV2Z —wsv2  —zV2 V2 —z3V2 —waV2

z1V2 hy wo z5 0 24 —w3
23V/2 ) s iy 26 —z4 0 wy
g=| w2 ws w —hi—hy ws —w) 0
w2 0 Wy —2z3 —hy —Z3 —ws
wzV2  —wy 0 z1 —wy —hs —we
z4V/2 z3 -2z 0 —25 —zg hi+hy

(see [19]), h; corresponds to t, z; corresponds to ny and w; corresponds to n_. Note that hy and h; are
short roots of the Lie algebra g,.

Proposition 2. All Go-invariant spaces on S are SO(7)-invariant.

Proof. The harmonic polynomial z% (z7 is a coordinate function) is annihilated by p(n,.). It is the
highest vectors of the irreducible representation with the highest weight k(hy + ha). By the Weyl formula
(1) the dimension of the invariant space, generated by z¥%, is equal to (k +4)(2k 4+ 5)/5'k! and is equal to
the dimension of Hj. It means that G-invariant spaces are SO(7)-invariant.

XY
z =X
and Z are skew-symmetric m x m matrices. This realization is obtained by the reduction of the usual
0 Iy
M T

It is convenient to realize so(2m,C) as the set of matrices ) , where X is arbitrary, Y

quadratic form in C*™ to the form ( ) by a linear change of variables. In the new coordinates
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a function f is harmonic if (3 %, 8/0z;0zm+:)f = 0, where T; = Zpm4i. To describe invariant algebras

in the cases (8) and (9) we consider an embedding of so(2{+1, C) to so(2, C) corresponding to the spinor
representation, details see in [8].

Let Ct be a subalgebra of even elements of the Clifford algebra. Choose generating elements vy, . . ., v,
wy ..., w; of C* such that vjv; + vjvi = 0, wiw; + wjw; = 0, v;w; + wjv; = —26;;. A basis of Ct is
the set of elements v;, ...v; wj, ... wj, where i1 < ... < 4p, j1 < ... < j,. The space generated by

V1. W, ... W), J1 < ... < Js, is 2'-dimensional right ideal in CF.

Let (h;, e;, f;) be sl(2, C)-triple corresponding to the simple root ; of the Lie algebra so(2! + 1, C).
The elements h; generate t, e; generate ny. The spinor representation 7 of so(2l + 1,C) is defined by
formulas

r(ei)z = tzviwipy, i=1,...,1-1; r(er)z = Lzu;

T(h,‘)z = §z(v.-w,- — v;+1w|‘+1), $ =1, =1 r(h;)z =14 vnw.

Let £, = vy ...y be a coordinate function. The harmonic polynomial z¥ is the highest vector of the
irreducible representation with the highest weight kh;. The harmonic polynomial :::',‘_ﬁ,_1 41 is the lowest
vector of this representation, zgi-14; = vy ... vwy ... wy.

Proposition 3. All Spin;-invariant spaces on S are SO(8)-invariant.

Proof.  The dimension of the irreducible representation of so(7,C) with the highest weight khs is
equal to (k + 5)!(2k + 6)/6'k! by the Weyl formula (1) and is equal to the dimension of Hj. It means
that H} is irrducible.

Proposition 4. There are only five Sping-invariant algebras and they are self-adjoint: the three
SO(16)-1nvariant algebras, the algebra of functions which are constant on the fibres of the Hopf fibration
515 ., S8 and its subalgebra of functions which are even on the base of the fibration.

Proof.  Set
y = (v)(vwawsws) — (vws)(vwaws) + (vws)(vwaws) — (vws)(vwaws),

Y1 = zg(vw) — (vwaws)(vwy waws) + (vwy ws)(vwywaws) — (vwy wa)(vw) waws),

where the elements of the Clifford algebra are contained in the brackets and v = v;vav3v4, we multiply
the brackets as coordinate functions. The harmonic polynomial s; = z¥y' is annihilated by p(n4), it is
the highest vector of the irreducible representation with the highest weight khs + lh;. The lowest vector
of this representation is s; = z&y¥ = z¥y!. Denote the corresponding invariant subspace of Hyy2 by Vi .
It could be shown that Hy C C(S'°) is a direct sum of Vi_2;4, i = 0,...,[k/2] (see [19, pp. 304-305]
with another notation).

Proposition 1 implies that the algebra B of functions which are constant on the fibres of the Hopf
fibration Sping/Spin; = S'® — S® = Sping /Sping and its subalgebra of functions which are even on the
base of the fibration are invariant algebras, namely the closures of )~ Vp; and )" Vj 21. There are no other
nontrivial SO(9)-invariant subalgebras of B ~ C(S®).

Suppose that an invariant algebrdA A contains the space Vi, k > 1. Since s3 = 7(es)sz =
(vwlwgwa):r’;'lyf we have ((vwjwows)zy,s1s3) # 0, 1. e. sq4 = (vwywows)z; € A. Projections of s4
on the spaces V2o and Vj,; are non-zero, so all even functions are contained in A. If k is odd then A
coincides with C(S'®).

2 Complex spheres

Let O(p, q) be the space of homogeneous polynomials of degree p on z and q on Z, H(p, q) be its subspace
of harmonic polynomials. Let 7 be the representation of U(n) in Ok, w(g)s(z) = s(g~'2). The tangent
representation of u(n) is defined by

m(X)s(z) = %[S(EXP(—fX)Z)]h:o = {V.s(2), - X2} + {Vzs(2), =Xz},
where Vs = (8/0y1,...0/0yn), {a,b} = 3" a;b;.

Choose a basis of u(n) in the form ujx = ejx — exj,j < k; vjr = i(ejr + ex;); t; = iej;. Then

a a

) e 0 . __'—'i)
W(“Jk)—*(zkaj-_""’:a'fzka? ZJBE 8,
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#(3) = il e O 20
L s e

! d _a
w(t;) = —i(z; R Zja—z—j)s-

Choose a basis of u(n)® = gl(n,C) as l;; = —it; = ejj, lix = (ujr — ivjz)/2 = ejx. We have
w(ejk) = —zka/azj =+ '2?6/65

It was shown in [17] that the spaces H(p, q) are irreducible components of the representation of U(n).
The Lie algebra su(n)® = sl(n, C) consists of all matrices with zero trace, its subalgebra ny is generated
by eij, i < j. The polynomial 25z € H(p,q) is annihilated by m(n4), so it is the highest vector of
the irreducible representation. The operator 3 _, exr acts on H(p,q) as the multiplication on (¢ — p)
hence the spaces H(p, ¢q) are irreducible components of representation of sl(n, C). Moreover, if n > 2 then
the highest vectors of different H(p,q) have different eigenvalues under the action of m(e1; — e22), i. e.
SU(n)-invariant spaces are U(n)-invariant and we have

Proposition 5. Ifn > 2 then SU(n)-invariant algebras on S**~' are U(n)-invariant.

Since Y~ H(p, p) coincides with the set of all polynomials which are constant on all complex lines we
have

Corollary. All invariant algebras on P"C = SU(n+1)/S(U(n)xU(1)) are contained in the following
list: C(P"C), C and (in the case n = 1) the algebra of functions which are constant on pairs of orthogonal
complez lines.

3 Quaternion spheres, the special cases

Let us consider the action of the group Sp(n) x Sp(1) on S**~1, Sp(n) acts by the multiplication from the
left and Sp(1) acts by the multiplication from the right. We realize Sp(n) as the set of unitary 2n x 2n
matrices such that S'JS =J, J = _OI ‘g‘ ) Elements of sp(n,C) are matrices X = ( é g )
with B = B, C = Ct, D = —A*. Choose a basis of sp(n,C) in the form

G 0 {0 esteg - 0 0
a'J_( 0 —ej,-)’b‘-’_(o 0 ) G = eij + €j5i 0 :

The Cartan subalgebra t of sp(n, C) is generated by aj;, ny is generated by b;; and a, k < [.
Consider the restriction of the representation 7 to sp(n,C), w; = zn4i:

o a k)
m(aij) = m(eij) — T(en4jn+i) = —2j = Ao - 2 i G ™ Y

_ 0 GE o L)
T(bij) = m(ei,nti) + (€j,n4i) = —w; A oo~ Yios; .

= ) a 2
(i) = m(entij) + T(entii) = —z B T 5% “5u; g

Since sp(1, C) @ sp(1, C) = so(4,C) and sp(1) @ u(1) = u(2) we assume that n > 2. The polynomial
81 = w’f?{{wﬁg = wgfl)'

is annihilated by w(n4); denote by P(p,q,r) the corresponding invariant space. P(p,q,r) is the space of
the irreducible representation of sp(n, C) with the highest weight (p+¢+r,7,0,...,0), the lowest vector
of this representation is
Bol= Z’;E‘{(Zgwl = Zlmg)r.

It was shown in [10] that H(p, q) = @;:g(p'q)f’(p—i, q—1i,1). Operators Ly = {2z, Vg} — {w, Vz} and
Ly = {w,V,} — {Z,Vy} commute with 7 (for every n). They map P(p,q,r) on P(p+ 1,94 —1,r) and
P(p—1, g+1,r) respectively. Operators Ly, Ly and Lo = [L1, La] = {w, Vu}+{2,V.}—{®,Vy}—{Z, V. }
define the action of Sp(1). The spaces Y 5= P(i, k — i — 21,1), 0 > 1 > [k/2] are Sp(n) x Sp(1)-invariant
irreducible subspaces of Hy.
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Proposition 6. All Sp(n) x Sp(1)-invariant algebras on S*"~' are contained in the following list:
the SO(4n)-invariant algebras; the algebra of functions satisfying a condition f(w) = f(wq) where w is a
quaternion vector and q is an arbitrary quaternion from Sp(1); in the case n = 2 the algebra of functions
satisfying the condition f(w) = f(z) if (z,w) = 0. All these algebras are self-adjoint.

Proof.  Closures of the spaces § ;oo P(0,0,i) and 32 P(0,0,2i) in the case n = 2 are the men-
tioned algebras. It is sufficient to show that there are no other ones.

Suppose that P(p,q,r) and P(k,l,m) liein A, p > q and k < l. Let s; and s be the highest and the
lowest vectors of representation in P(p,q,r). Since ((z1w1)?~9,s182) # 0, H(2p — 2¢,0) C A. Similarly
we have H (0,2l — 2k) C A. It means that A contains H(1,1) [17], in particular A contains P(0,0,1).
Therefore A contains H(p + r,q + r) and H(k + m,l + m), so A is U(2n)-invariant and self-adjoint..
Moreover, if A is Sp(n) x Sp(1)-invariant then P(2,0,0), P(0,2,0), P(1,1,0) and P(0,0, 1) are contained
in A, the space of all even functions lies in A.

Suppose that an algebra A contains P(0,0,1), ! > 0, sy is the highest vector and s, is the the lowest
vector of the representation in P(0,0,!). P(0,0,2) is contained in A because (s3,(m(c11)s1)s2) # 0,
where s3 is the lowest vector of representation in P(0,0,2). If n > 3 then P(0,0,1) is contained in the
space generated by products of polynomials from P(0, 0, 2) and the statement is proved. The exceptional
algebra in the case n = 2 also could be described as the algebra of functions which are constant on the
fibres of the Hopf fibration S” — S* and even on the base of the fibration (sp(2, C) = so(5, C)).

Corollary. All Sp(n + 1)-invariant algebras on the quaternion projective space P™H = Sp(n +
1)/Sp(n) x Sp(1) are contained in the following list: S(P™H), C and (in the case n = 1) the algebra of
functions which are constant on pairs of orthogonal quaternion lines.

Let us consider the action of the group Sp(n) x U(1) on §%"~1. The generating element of u(1)
acts on P(p,q,r) by the multiplication on (p — ¢). Therefore the spaces P(p,q,r) are separated. It
means that P(p,q,r) is Sp(n) x U(1)-invariant irreducible subspace of Hpyq42r, P(p,q,7) is a subspace
of eigenfunctions of operators LiLy and Ly L, with eigenvalues (p + 1)q and (g + 1)p.

Proposition 7. Every antisymmetric Sp(n) x U(1)-invariant algebra on
S4n=1 is q subalgebra of some antisymmetric U(2n)-invariant algebra. The only Sp(n) x U(1)-invariant
self-adjoint algebra on S*™~' which is not Sp(n) x Sp(1) and U(2n)-invariant is the algebra of functions
satisfying conditions f(w) = f(aw), |a| =1 and f(w) = f(wg), where ¢ = ( (1) —01 ) Every Sp(n) x
U(1)-invariant algebra A could be represented as A = B @ S where B is an antisymmetric invariant
algebra and S is a self-adjoint invariant algebra.

Proof. If P(p,p,r) is contained in A then A contains the polynomial s; = 53, where s is the highest
vector and s is the lowest vector, so A is not antisymmetric. If A is antisymmetric we may assume that A
consists of P(p, q,r), such that p > ¢ (the case of the alternative inequality corresponds to the conjugated
algebra). Then A is contained in the antisymmetric U(2n)-invariant algebra U, H(p,q) U H(0,0) and
the first part of the proposition is proved.

Let A be a self-adjoint mva.na.nt a}gebra which is not Sp(n) x Sp(1)- and U(2n)-invariant, as stated
in the Proposition 6, A C E“ _o P(k,k,1). Suppose that P(k,k,l) C A and k # 0, s; and s are the
hlghest and the lowest vectors of the representa.tlon in P(k,k,!l). Since (mw(baass, (m(caa)s1)s2) # 0, where
s3 is the lowest vector of the representation in P(0,0,2), P(0,0,2) is contained in A. Since (s4, 5133) =0
where s4 is the highest vector of the representation in P(2k,2k,0), P(2k,2k,0) is contained in A too.
Since (m(ba2se, (m(c22)s4)s5) # 0, where s5 is the lowest vector of the representation in P(2k,2k,0) and
sg is the lowest vector of the representation in P(2,2,0), P(2,2,0) is contained in A.

Union of all P(k, k,l) with even k is the set of all polynomials satisfying conditions f(w) = f(aw),
0 -1
ik ]
of all polynomials which are constant on orthogonal complex lines lying on the same quaternion line.

For an invariant algebra A set S = AN A. Then S is a self-adjoint invariant algebra. Let B be the
orthogonal complement to S in A (in L?), B consists of P(p,q,r) such that either p > g or p < ¢. If
f € Band h € B then fh € B. B is an antisymmetric invariant algebra and the proposition (and the
theorem) is proved.

|a| = 1 and f(w) = f(wq) where g = ( . This invariant algebra could be described as the set

Corollary. All invariant algebras on P?"+'C = Sp(n+1)/Sp(n)x U(1) are contained in the following
list: C(P?"+'C); C; the algebra of even functions; the algebra of functions which are constant on the
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fibres Sp(1)/U(1) of the fibration Sp(n + 1)/Sp(n) x U(1) — Sp(n + 1)/Sp(n) x Sp(1) and (in the case
n=1) its subalgebra of functions which are even on the base of the fibration.

4 Sp(1): a family of invariant algebras

We can identify the group SU(2) = Sp(1) with the set of matrices ( (; _Eb
the sphere S% C C? with the multiplication (a,b) * (¢,d) = (ac — bd, be + ad).
It was shown in [10] that the set of all highest vectors of irreducible representations of sp(1,C) in Hy
coincides with the set of polynomials of the form Z?:o Yiw'zt i 4y € C.
The vector space generated by polynomials

), la]? + [b]* = 1 or with

a; = aw? — wz,

as = W(Cll)al = 202w + wW — Zz

1
az = 571’(611)02 —az’+ 2w

1s invariant under the action of SU(2) from the left. Let A,, o > 0, be the invariant algebra with
generating elements a1, ay, az (the algebra Ay = Y~ H(k, k) is U(2)-invariant and self-adjoint).

Proof of the Theorem 2. There are following relations between the generating elements:
ag —4ajaz =1 (2)
2|ay|? + |az|? + 2|as|? = 1 + 202 (3)

An image of the sphere under the mapping 7' : C* — C® defined by the polynomials a;, as and ag is
the set of points satisfying (2) and (3).

If p is a polynomial from A, then pis a polynomial on a;, as and a3 and satisfies df Aday A day A das
= 0. This equation is equivalent to

ad . d o} i
(za—(2az+w)—(%+w%+(2aw—2)5_;) f=0 (4)

Every operator commuting with 7 is some polynomial on Lo, L; and Lj. Vector fields iLg, Ly — L»
and i(L1 + L) generate the space of all invariant real vector fields on the sphere. Vectors dT(i(dz—dz)+
ai(dw — dw)) and dT(—a(dw + dw)) generate a complex tangent line at the point (0,-1,e¢) = T(1,0).
Since (4) is equivalent to

((za(L1 -+ Lg) — ILQ) + ia(L1 —_ Lg))f =1} (5)

and at the point (1,0) (5) gives

(a5 = ) = i = ) +in(+ L) 1,00 =,

we obtain invariant CR-conditions on S3.
Suppose that a homogeneous harmonic polynomial p #const is the highest vector of some irreducible
component of the quasi-regular representation,

Kk
p= Z Tzt

i=0

If p satisfies (4) we obtain the relations between «;:

Y0 =0, (2 = k)yi + 2a(k — 1+ i)7;—; = 0.

They implies that 7; = 0 for all i < k/2 and k is even. Moreover, p is uniquely determined by 7; /2
It means that p = ')qclgaif/z, 1. e. plies in A,. Since every polynomial on the sphere is the sum of
homogeneous harmonic polynomials we prove the first part of the theorem.

For every operator L = tgiLo+1t,Ly +12L> we can choose 7;, i = 1,2, 3, such that the polynomial p =
70Z° +71w'Z' +7,w? is annihilated by L. There is a right translation T such that p*T = 7022 + 7 ‘wizl.
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Then L+T = tg‘iLo+1t,°L;. Since the usual CR-conditions are defined by the equation L; f = 0 suppose
that 3 = 1 and ¢; = 1. The right translation by the corresponding diagonal matrix gives a; for some
a > (. Note that the equation Lyf = 0 doesn’t define CR-structure, so the Theorem 2 is proved.

Proof of the Theorem 3. Suppose that there exists f € A, such that f = f. Algebra A, is
contained in Up>4>0H (p, g). Therefore f lies in the closure of U52,H(p,p). If f is not constant function
then H(2,2) lies in A, (see [17]). Since z*w? € H(2,2) does not satisfy (4) f is a constant function.

The maximal ideal space of the algebra A, is the polynomially convex hull of the image of the sphere
inC3[1]. Let z=0(, w=0n, |0] =1, |(|*+ |5]* = 1. Then

a1 = ab’C* + (7, a2 =2a0%Cn+[n]* — (I, a3 = ab’n® —nC.

This mapping extends holomorphically on ¢ in the unit disc by a natural way. A calculation shows that
the family of mappings f¢, : D — C3 covers a part of the hyperboloid (2) which is contained in the
ellipsoid (3). Thus we have found M,.

The algebra A, consists of all analytic in the relative interior and continuous up to the boundary func-
tions since it is generated by the analytic polynomials and every analytic fuction satisfies CR~conditions
(4).

There is a transitive action p of SU(2)® = SL(2,C) on the hyperboloid (2), p(T)M = TMT", where

M= ( 2:'21 2“(123 ), the emdedding of the sphere is equivariant. Choose three subgroups of SU(2):

prd S (] cost sint cost isint
G = ( i est? )’ Gy = ( —sint cost )’ Gs = ( isint cost )

Points (0,1, 0), £1/2(1,0,—1) and £1/2(z,0,1) are the only fixed points with respect to the action of
G1, G2 and G35 respectively. Hence SU(2) have no fixed points.

Let p be a linear functional corresponding to the invariant normalized measure on S®, precisely the
Haar measure on the group SU(2). Then p(a;) = p(as) = p(as) = 0 but p(1) = 1, so p is not a
multiplicative functional on A,.

Suppose that Aq = @ ¢ Z4 By, is an invariant Z,-grading. It means that constant functions lie in
Bg. The relation (2) implies that if B is the invariant space generated by a;, az and a3 then B? C By.
Hence A is contained in By, and the Theorem 3 is proved.

Remark. A minimal Sp(n)-invariant algebras on the sphere in C® n > 2, containing the highest
vector aw? — w71, is not antisymmetric. If n = 2 it contains the algebra of functions which are constant
on all pairs of quaternion lines. If n > 3 it contains the algebra of functions which are constant on all
quaternion lines.
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