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� 1. Preliminaries about Euclidean Jordan algebras

Vinberg's theory [3] tells us that associated to a homogeneous open convex cone
containing no entire line, we have a clan structure in the ambient vector space.
In this note we deal with the symmetric cone in a Euclidean Jordan algebra, and
describe the associated clan structure.

Let V be a simple Euclidean Jordan algebra of rank r with unit element e. For
x ∈ V , we denote by M(x) the multiplication operator1 by x, so that M(x)y = xy
for any y ∈ V . Let tr denote the trace function on the Jordan algebra V , and de�ne
an inner product in V by 〈x|y〉 := tr(xy). Let us �x a Jordan frame c1, . . . , cr. We
have c1 + · · ·+ cr = e. The Jordan frame c1, . . . , cr yields the Peirce decomposition
V =

⊕
j6k Vjk, where Vjj = Rcj (j = 1, . . . , r), and

Vjk :=

{
x ∈ V ; M(ci)x =

1

2
(δij + δik)x (i = 1, . . . , r)

}
(1 6 j < k 6 r).

Let Ω := Int{x2 ; x ∈ V }, the interior of squares in V , be the symmetric cone
in V . The linear automorphism group of the cone Ω is denoted by G(Ω):

G(Ω) := {g ∈ GL(V ) ; g(Ω) = Ω}.

We know that G(Ω) is reductive. Let g be the Lie algebra of G(Ω), and k the
derivation algebra Der(V ) of the Jordan algebra V . Put p := {M(x) ; x ∈ V }.
Then g = k + p is a Cartan decomposition of g with the corresponding Cartan
involution θX = − tX. Let

a := RM(c1)⊕ . . .⊕ RM(cr).

1The notation in the book [1] is L(x). Since we use left multiplication operators in clans, we
have chosen a di�erent symbol to avoid any confusion.
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Then a is an abelian subalgebra which is maximal in p. Let α1, . . . , αr be the basis
of a∗ dual to M(c1), . . . ,M(cr). We know that the positive a-roots are (αk − αj)/2,
k > j, and the corresponding root spaces g(αk−αj)/2 =: nkj are described as

nkj := {z� cj ; z ∈ Vjk},

where a� b := M(ab) + [M(a),M(b)]. Summing up all of the nkj as n :=
∑

j<k nkj,
we have an Iwasawa decomposition g = k+a+n. Let A := exp a and N := exp n, the
subgroups of G(Ω) corresponding to a and n respectively. The semidirect product
group H := N o A acts on Ω simply transitively, so that the orbit map H 3 h 7→
he ∈ Ω is a di�eomorphism. Then its derivative at the unit element of H gives rise
to a linear isomorphism h := Lie (H) 3 X 7→ Xe ∈ V . Its inverse map is denoted as
V 3 v 7→ Xv ∈ h. We have by de�nition Xve = v.

� 2. Clan structure of a Euclidean Jordan algebra

We keep to the notation in � 1. Let us introduce a bilinear product 4 in V by

v14v2 := Xv1v2 (v1, v2 ∈ V ).

By Vinberg [3], the product 4 de�nes a clan structure in V , that is, we have
(C1) [Xv1 , Xv2 ] = Xv14v2−v24v1 for all v1, v2 ∈ V ;
(C2) there is s ∈ V ∗ such that 〈v14v2, s〉 de�nes an inner product in V ;
(C3) the operators Xv (v ∈ V ) have only real eigenvalues.

We note that for (C2), it su�ces to take s = tr(·) in this case. For Xv we have the
following lemma.

Lemma 2.1 (1) If v = a1c1 + . . .+ arcr (a1 ∈ R, . . . , ar ∈ R), one has Xv = M(v).
(2) If v ∈ Vjk, then Xv = 2(v� cj).

In what follows, we write Rv the right multiplication operator by v ∈ V :

Rvv
′ := v′4v (v′ ∈ V ).

By noting that c1, . . . , cr are also primitive idempotents in the clan structure, the
Peirce spaces Vjk, j 6 k, are the spaces for the normal decomposition relative to
them:

Vjk = {x ∈ V ; Xcix =
1

2
(δij + δik)x, Rcix = δijx (i = 1, . . . , r)}.

Thus the general clan multiplication rule is applied to the Peirce spaces, and we
have

Vkl4Vjk ⊂ Vjl,

if k 6= i, j, then Vkl4Vij = 0,

Vkl4Vkm ⊂ Vml or Vlm, according to m > l or l > m.

(2.1)
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We put

Ξ := V1r ⊕ . . .⊕ Vr−1,r, W := Ξ⊕ Rcr.

Then (2.1) immediately implies

Proposition 2.2 W is a two-sided ideal in the clan V . In other words, one has for
any v ∈ V

Xv(W ) ⊂ W, Rv(W ) ⊂ W.

In view of Proposition 2.2 we put for v ∈ V

RW
v := Rv

∣∣
W
.

Let us set

V ′ :=
⊕

16i6i6r−1

Vij.

Then V = V ′ ⊕W , and V ′ is a Euclidean Jordan algebra of rank r − 1, and thus
has a clan structure. The right multiplication operator by v′ ∈ V ′ in the clan V ′ is
denoted by R′v′ .

Corollary 2.3 By writing v ∈ V as v = v′ + w with v′ ∈ V ′ and w ∈ W , the
operator Rv is of the form

Rv =

(
R′v′ 0
∗ RW

v

)
.

We next analyze the operator RW
v . First, (2.1) implies that if v′ ∈ V ′, we have

Rv′(Ξ) ⊂ Ξ. We put RΞ
v′ := Rv′

∣∣
Ξ
. To see what RΞ

v′ looks like, we de�ne operators
φ(v′) (v′ ∈ V ′) on Ξ by

φ(v′)ξ := 2v′ξ (ξ ∈ Ξ).

Since V ′ (resp. Ξ) is the Peirce 0 (resp. the Peirce 1/2) space for the idempotent
cr, we know that the map φ : v′ 7→ φ(v′) ∈ End(Ξ) is a unital Jordan algebra
representation of V ′. The following lemma is somewhat remarkable.

Proposition 2.4 RΞ
v′ = φ(v′) for any v′ ∈ V ′.

Proposition 2.5 By writing v ∈ V as v = v′+ξ+vrcr with v
′ ∈ V ′, ξ ∈ Ξ, vr ∈ R,

the operator RW
v is of the form

RW
v =

 φ(v′)
1

2
〈· | cr〉 ξ

〈· | ξ〉 cr vr IVrr

 .

We now renormalize the inner product 〈 · | · 〉 in W = Ξ⊕ Rcr by

〈η + yrcr | η′ + y′rcr〉W := 〈η | η′〉+
1

2
yr y

′
r (η, η′ ∈ Ξ and yr, y

′
r ∈ R).
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Then the operator RW
v expressed in Proposition 2.5 is written in a more symmetric

way:

RW
v =

 φ(v′) 〈· | cr〉W ξ

〈· | ξ〉W cr vr IVrr

 (v = v′ + ξ + vrcr). (2.2)

In summary we obtain the following inductive structure for the right
multiplication operators Rv:

RW
v =

 φ(v′)
1

2
〈· | cr〉 ξ

〈· | ξ〉 cr vr IVrr

 .

Theorem 2.6 Decomposing v ∈ V as v = v′ + ξ + vrcr with v′ ∈ V ′, ξ ∈ Ξ and
vr ∈ R, one has

Rv =


R′v′ 0 0

∗ φ(v′) 〈· | cr〉W ξ

∗ 〈· | ξ〉W cr vr IVrr

 .

To get a �standard form� of the operator matrix RW
v in (2.2), we �rst take

k ∈ Aut(V ′) so that we have

v′ = k(λ1c1 + . . .+ λr−1cr−1) (λ1, . . . , λr−1 ∈ R).

We have Aut(V ′) = exp Der(V ′), and we know that elements in Der(V ′) are all
inner. Thus we write k = expT ′, where T ′ is a sum of operators of the form
[M(a′),M(b′)] with a′, b′ ∈ V ′. In this way, we see that Der(V ′) ⊂ Der(V ), so
that we have Aut(V ′) ⊂ Aut(V ). Hence we regard k as an element in Aut(V ) such
that kcr = cr and kΞ ⊂ Ξ. For η ∈ Ξ, we have

φ(v′)η = 2v′η

= 2k
{

(λ1c1 + . . .+ λr−1cr−1)(k−1η)
}

= k (λ1P1 + . . .+ λr−1Pr−1) k−1η,

where Pj denotes the orthogonal projection Ξ → Vjr (j = 1, . . . , r − 1). Hence we
obtain with ξ′ = k−1ξ ∈ Ξ,

RW
v = k

 λ1P1 + . . .+ λr−1Pr−1 〈· | cr〉W ξ′

〈· | ξ′〉W cr vr IVrr

 k−1. (2.3)

Finally we compute detRv (v ∈ V ) as an application of Theorem 2.6 and the
expression (2.3). To do so, we recall the following obvious formula: if detA 6= 0, then(

A B
C D

)
=

(
A 0
C D − CA−1B

)(
I A−1B
0 I

)
,
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so that

det

(
A B
C D

)
= detA · det

(
D − CA−1B

)
.

We apply this to (2.3) under the condition that λ1 · · ·λr−1 6= 0. Then, decomposing
ξ′ ∈ Ξ as ξ′ = ξ′1 + . . .+ ξ′r−1 with ξ′j ∈ Vjr, we have by a simple computation

detRW
v = (λ1 · · ·λr−1)d−1 ×

×
{
λ1 · · ·λr−1vr −

1

2

(
λ2 · · ·λr−1‖ξ′1‖2 + . . .+ λ1 · · ·λr−2‖ξ′r−1‖2

)}
, (2.4)

where d is the common dimension of Vjk, j < k. Since both sides are polynomials in
λ1, . . . , λr−1, the equality holds without the restriction λ1 · · ·λr−1 6= 0. Now we have
the following lemma gotten by applying [1, Proposition VI.3.2] to c = c1.

Lemma 2.7 One has

∆r(λ1c1 + . . .+ λr−1cr−1 + ξ′ + vrcr)

= λ1 · · ·λr−1vr −
1

2

(
λ2 · · ·λr−1‖ξ′1‖2 + . . .+ λ1 · · ·λr−2‖ξ′r−1‖2

)
.

This lemma together with (2.4) shows that detRW
v = ∆r−1(v)d−1∆r(v). Now

summing up all the above discussions and using Theorem 2.6, we obtain by induction
the following proposition:

Proposition 2.8 For v ∈ V , one has detRv = ∆1(v)d · · ·∆r−1(v)d∆r(v).

Remark 2.9 We have detRhv = χ(h) detRv, h ∈ H, v ∈ V , where χ(h) :=
(detV h)(det Adh)−1. For this we refer the reader to the proof of [2, Lemma 2.7].
The one-dimensional representation χ of H comes from the linear form on a given
by
∑r

j=1[1 + d(r − j)]αj. From this we also obtain Proposition 2.8.
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