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§ 1. Preliminaries about Euclidean Jordan algebras

Vinberg’s theory [3| tells us that associated to a homogeneous open convex cone
containing no entire line, we have a clan structure in the ambient vector space.
In this note we deal with the symmetric cone in a Euclidean Jordan algebra, and
describe the associated clan structure.

Let V be a simple Euclidean Jordan algebra of rank r with unit element e. For
x € V, we denote by M(z) the multiplication operator! by x, so that M (z)y = zy
for any y € V. Let tr denote the trace function on the Jordan algebra V', and define
an inner product in V by (z|y) := tr(zy). Let us fix a Jordan frame ¢y,...,c,. We
have ¢; + - -+ 4+ ¢, = e. The Jordan frame cy, ..., ¢, yields the Peirce decomposition
V= @jgk Vik, where Vj; =Re; (j=1,...,r), and

1
Vig = {:ce Vi M(¢)x = 5(6ij+5ik)x (1= 1,...,7")} (1<j<k<r).
Let Q := Int{z? ; x € V}, the interior of squares in V, be the symmetric cone
in V. The linear automorphism group of the cone (2 is denoted by G(2):
G(Q) :={g € GL(V) ; g(Q) = Q}.

We know that G(2) is reductive. Let g be the Lie algebra of G(Q2), and ¢ the
derivation algebra Der(V) of the Jordan algebra V. Put p := {M(z) ; z € V}.
Then g = ¢ + p is a Cartan decomposition of g with the corresponding Cartan
involution #X = —'X. Let

a:=RM(c;)®...5RM(c,).

!The notation in the book [1] is L(z). Since we use left multiplication operators in clans, we
have chosen a different symbol to avoid any confusion.
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Then a is an abelian subalgebra which is maximal in p. Let a1, ..., a,. be the basis
of a* dual to M(cy),..., M(c,). We know that the positive a-roots are (oy, — t;)/2,
k > j, and the corresponding root spaces g(a,—a,)/2 =: M; are described as

ng = {z0¢;; 2 € Vii},

where a (10 := M (ab) + [M(a), M(b)]. Summing up all of the ny; as n:= 3. _; ny,
we have an Iwasawa decomposition g = ¢+a+n. Let A :=expa and N := expn, the
subgroups of G(£2) corresponding to a and n respectively. The semidirect product
group H := N x A acts on () simply transitively, so that the orbit map H > h —
he € €1 is a diffeomorphism. Then its derivative at the unit element of H gives rise
to a linear isomorphism b := Lie (H) 5 X — Xe € V. Its inverse map is denoted as
V 3 v— X, €h. We have by definition X, e = v.

§ 2. Clan structure of a Euclidean Jordan algebra

We keep to the notation in § 1. Let us introduce a bilinear product A in V' by
v1Avy 1= X, vy (v1,v9 € V).

By Vinberg [3], the product A defines a clan structure in V', that is, we have

(Cl) [le,XUQ] = leAvgfngvl for all U1, Vg € V;

(C2) there is s € V* such that (v;Avs, s) defines an inner product in V;

(C3) the operators X, (v € V') have only real eigenvalues.
We note that for (C2), it suffices to take s = tr(-) in this case. For X, we have the
following lemma.

Lemma 2.1 (1) Ifv=aic1 + ...+ a,¢, (a1 €R,... a, € R), one has X, = M(v).
(2) If v € Vi, then X, = 2(vOgc;).

In what follows, we write R, the right multiplication operator by v € V:
R :=v"Av (V' eV).

By noting that c¢q,...,c, are also primitive idempotents in the clan structure, the
Peirce spaces Vj, j < k, are the spaces for the normal decomposition relative to
them:

1
Vike=Az eV ; X,z = 5(51‘3‘ +6i)x, Reyx =050 (i=1,...,7m)}

Thus the general clan multiplication rule is applied to the Peirce spaces, and we

have
Vi AV, C Vi,

if k #1,j, then VAV, =0, (2.1)
Vi AV, C Vi or Vi, according to m > [ or [ > m.
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We put
2=V, ®...0 V1, W .=Z & Re,.

Then (2.1) immediately implies
Proposition 2.2 W is a two-sided ideal in the clan V. In other words, one has for

any v eV
X,(W) C W, R,(W) C W.

In view of Proposition 2.2 we put for v € V
RY = RU}W.

Let us set

V/ = @ ‘/Z_]

1<ii<r—1

Then V = V'@ W, and V' is a Euclidean Jordan algebra of rank » — 1, and thus
has a clan structure. The right multiplication operator by v € V' in the clan V' is
denoted by R/,.

Corollary 2.3 By writing v € V as v = v +w with v € V' and w € W, the
operator R, is of the form
R, 0
Ry = ( * RW )
We next analyze the operator RY. First, (2.1) implies that if v € V', we have

Ry(Z) C 2. We put R := Ry|_. To see what R looks like, we define operators
o(v') (v € V') on = by

o(v)§ =20¢  ((€E).

Since V' (resp. Z) is the Peirce 0 (resp. the Peirce 1/2) space for the idempotent
¢y, we know that the map ¢ : v — ¢(v') € End(Z) is a unital Jordan algebra
representation of V', The following lemma is somewhat remarkable.

Proposition 2.4 RS = ¢(v') for any v/ € V'.

Proposition 2.5 By writingv € V asv =v"4+{+v.c, withv' € V', £ € Z v, € R,
the operator RY is of the form

<'|Cr>€

N | —

<‘£> Cr v Iy,

We now renormalize the inner product (-|-) in W = Z® Re, by

1 _
=+ yeer |0 +yrcr)w = (| n') + 5 Ur y. (n,n' € Zand y,,y, € R).
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Then the operator R expressed in Proposition 2.5 is written in a more symmetric
way:
o(v) {-lerhw €
RY = (v=0v+&+v0). (2.2)
(1w e v Iy,
In summary we obtain the following inductive structure for the right
multiplication operators R,:

¢(v') (ler)€

1
2
<. | £> Cr Uy ‘[er

Theorem 2.6 Decomposing v € V as v = v + &+ vc, with v € V!, £ € = and
v, € R, one has

RV =

v

R, 0 0
R,=| = o(v') (lerwé

+  (lOwe  uly,

To get a “standard form” of the operator matrix RY in (2.2), we first take
k € Aut(V') so that we have

v = k()\lcl +...+)\T,1CT,1) ()\17...,)\7«,1 € R)

We have Aut(V’) = expDer(V’), and we know that elements in Der(V’) are all
inner. Thus we write & = expT’, where 7" is a sum of operators of the form
[M(a"), M (V)] with a',b' € V'. In this way, we see that Der(V') C Der(V), so
that we have Aut(V’) C Aut(V). Hence we regard k as an element in Aut(V') such
that kc, = ¢, and k= C =. For n € =, we have

¢(v)n = 2u'n
= 2k {()\161 + ...+ )\rflchl)(kilﬁ)}
= k (/\1P1 + ...+ )\T—lpT’—l) kf_ln,

where P; denotes the orthogonal projection = — Vj, (j =1,...,r — 1). Hence we
obtain with & = k7€ € Z,

MPL+ A P (lerwé
RY =k kL (2.3)
<. | €/>W C’r’ vr IV,7

Finally we compute det R, (v € V') as an application of Theorem 2.6 and the
expression (2.3). To do so, we recall the following obvious formula: if det A # 0, then

A B\ [ A 0 I A"'B
c p)~\c p-ca'B)\o 1 )
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so that

¢ D

We apply this to (2.3) under the condition that A; --- \._; # 0. Then, decomposing
feZasf =& +...+ & with § € Vj,, we have by a simple computation

det ( A B ) = det A - det (D—C’A_lB).

det R = (A\p---M\_1)Tt x
1 ! !
X {Al Aty — 5 Mo A€l + o+ A Ar-allﬁrqll?)} , (2.4

where d is the common dimension of Vj;, j < k. Since both sides are polynomials in
A1y ..., A1, the equality holds without the restriction Ay --- A,._; # 0. Now we have
the following lemma gotten by applying [1, Proposition VI.3.2| to ¢ = ¢;.

Lemma 2.7 One has

A7”()\101 +... .+ /\r—lcr—l + gl + UT’CT)
1
= A A= 5 Qs A6 A AallE P

This lemma together with (2.4) shows that det RY = A,_;(v)*!A,(v). Now
summing up all the above discussions and using Theorem 2.6, we obtain by induction
the following proposition:

Proposition 2.8 For v € V, one has det R, = Aq(v)? -+ A, _1(v)?A,(v).

Remark 2.9 We have det R, = x(h)detR,, h € H, v € V, where x(h) =
(dety h)(det Adh)~!. For this we refer the reader to the proof of |2, Lemma 2.7].
The one-dimensional representation y of H comes from the linear form on a given
by > i1 [L+d(r — j)]e;. From this we also obtain Proposition 2.8.
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