УДК 620.193

ВЛИЯНИЕ КАТОДНОЙ ПОЛЯРИЗАЦИИ НА ДИФФУЗИЮ ВОДОРОДА ЧЕРЕЗ СТАЛЬНУЮ МЕМБРАНУ ИЗ ЭТАНОЛЬНЫХ РАСТВОРОВ НСІ

© М.В. Матвеева

Ключевые слова: сталь; водород; разряд; рекомбинация; мембрана; диффузия; скорость; катодная поляризация; этанол.

Исследовано влияние катодной поляризации входной стороны стальной мембраны (ВСМ) и концентрации HC1 (0,99–10⁻² моль/л) на соотношение скоростей реакции выделения водорода и его диффузии через сталь (ρ) в солянокислых этанольных растворах с постоянной ионной силой, равной 1. Показано, что ρ снижается со сдвигом потенциала поляризационной стороны мембраны в отрицательную сторону и увеличивается с уменьшением $C_{\rm HC1}$. Результаты интерпретированы с учетом степени заполнения поверхности двумя формами адсорбированного водорода: надповерхностной H^r_{anc} и подповерхностной H^s_{anc} .

ВВЕДЕНИЕ

Возникающая при диффузионных процессах, протекающих в кислых жидких и газовых средах, опасность адсорбции водорода в атомарной форме приповерхностными слоями металла губительно сказывается на его прочностных характеристиках, ведет к появлению механических напряжений и трещин в поверхностном слое и, в конечном счете, преждевременному разрушению металлоизделий.

С теоретической и практической точки зрения важным является интерпретация влияния заряда поверхности металла, изменение которого определяется внешней катодной и анодной поляризацией, на кинетику реакции выделения водорода (PBB) и диффузию водорода через стальную мембрану. В связи с этим в данной работе изучены закономерности твердофазной диффузии водорода через стальную (Ст3) мембрану при катодной поляризации ее входной стороны из растворов системы C₂H₅OH – H₂O – HCl (с постоянной ионной силой, равной 1) в присутствии и отсутствии KCNS как стимулятора наводороживания.

МЕТОДИКА ЭКСПЕРИМЕНТА

Этанол обезвоживали посредством длительного кипячения над свежепрокаленным при 600 °С оксидом кальция с последующей фракционной перегонкой при атмосферном давлении. Остаточное содержание воды в спирте (0,15–0,7 мас.%) определяли с помощью газожидкостной хроматографии в изотермических условиях. Смешанные водно-этанольные растворители получали добавлением к осушенному этанолу рассчитанного количества бидистилята.

Рабочие растворы состава x M HCl + (1 - x) M LiCl + + у мМ KCNS (где x = 0,10...0,99 моль/л, y = 0,5...10,0 ммоль/л) готовили насыщением смешанных водно-этанольных растворителей сухим хлороводородом. Концентрацию HCl фиксировали титрованием щелочью в присутствии фенолфталеина. В рабочие растворы для получения постоянной ионной силы, равной 1, добавлялось рассчитанное количество хлорида лития, высушенного при 105 ± 10 °C. В качестве стимулятора наводороживания использован роданид калия квалификации «х.ч.».

Скорость массопереноса водорода (i_н) через вертикально расположенную стальную (Ст3) мембрану толщиной 300 мкм и площадью 3,63 см² определяли по методике [1] в электрохимической двухкамерной ячейке типа Деванатхана, изготовленной из стекла «Пирекс». Продолжительность единичного эксперимента составляла 2 часа. Исследования проводились при катодной ($\Delta E_{\rm k} = E_{\rm kop} - E_{\rm k}$) поляризации входной стороны стальной мембраны. Е_к – фиксированная величина, соответственно, катодного и анодного потенциала поляризуемой стороны стальной мембраны, поддерживаемая постоянной на протяжении всего эксперимента. Поляризацию стальной мембраны проводили в потенциостатическом режиме при помощи потенциостата П-5827М. Потенциалы фиксировались относительно насыщенного хлоридсеребряного электрода и пересчитаны на н.в.ш. Среднюю силу тока (*i_к*) при заданном потенциале определяли кулонометрически, что позволило оценить величину $\rho = i_{\rm H}/i_{\kappa}$, представляющую собой долю абсорбированного водорода, диффундирующего в металл, от общего количества Налс, посаженного на металлическую поверхность в результате протекания РВВ.

Статистическую обработку экспериментальных данных проводили с использованием коэффициента Стьюдента при доверительной вероятности 0,95 по методике малых выборок [2].

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В этанольных растворах с исходной концентрацией воды 0,45 мас.% и составом электролита 0,99 М HCl + + 0,01 М LiCl величина скорости катодной реакции выделения водорода систематически увеличивается с ростом E_{κ} (рис. 1, кривая 1). Однако зависимость потока диффузии водорода $i_{\rm H}$ через стальную мембрану от E_{κ} носит иной характер. Вначале также наблюдается рост $i_{\rm H}$, но далее эта величина не зависит от E_{κ} (рис. 1, кривая 2). При уменьшении $C_{{\rm H}^+_{\rm solv}}$ в 10 раз связь i_k с E_{κ} качественно остается прежней (рис. 1, кривая 3). Кривая, характеризующая $i_{\rm H} = f(E_{\kappa})$, носит более сложный вид. На ней наблюдается плоский максимум, затем $i_{\rm H}$ перестает зависеть от E_{κ} (рис. 1, кривая 4).

Дополнительно изучена связь величины ρ , представляющей отношение $i_{\rm H}/i_k$ (где i_k усредненная из кулонометрических измерений скорость PBB за период двухчасовой поляризации) с E_{κ} . Величина ρ систематически уменьшается с ростом E_{κ} (рис. 2а, кривая 1 и 2).

При дальнейшем снижении $C_{\mathrm{H}^+_{\mathrm{solv}}}$ на порядок связь

 $i_{\rm k}$ с E_{κ} качественно остается прежней (рис. 1, кривая 5). Функция $i_{\rm H} = f(E_{\kappa})$ вновь проходит через сравнительно протяженный плоский максимум, а ее нисходящий участок сменяется областью независимости $i_{\rm H}$ от E_{κ} . По существу, кривые 4 и 6 рис. 1 идентичны. Некоторое отличие наблюдается лишь на зависимости ρ от E_{κ} , которая проходит через максимум, а нисходящий участок этой кривой также переходит в область, где ρ практически не зависит от E_{κ} (рис. 2а, кривая 3). Кроме того, величина ρ как функция E_{κ} заметно увеличивается при снижении концентрации ионов водорода в растворе (ΔE_{κ} = const), приближаясь к $\rho_{\rm max} \approx 1$ при $C_{\rm H^+}$ = = 0,01 моль/л (рис. 2a).

Следует отметить, что величина р представляет многоаспектный и практический интерес. В процессах, связанных с наводороживанием металлов и сплавов, рост р указывает на стимулирование абсорбции ими водорода и в итоге на нарастание водородной хрупкости. Ингибиторы, снижающие скорость РВВ, но одновременно повышающие р, становятся часто неприемлемыми. Такие варианты коррозионного поражения возможны в нефтегазовой промышленности или при транспортировке нефтепродуктов, где порывы нефтепроводов – серьезный бич сложившихся технологий.

Рис. 1. Влияние катодного потенциала входной стороны стальной мембраны на скорость PBB (1, 3, 5), и поток диффузии водорода через нее (2, 4, 6) из этанольных растворов с составом электролита *x* M HCl + (1 – *x*) M LiCl. $C_{H_2O}^{ucx} = 0.45$ мас.%. *x*, моль/л: 1, 2 – 0.99; 3, 4 – 0.1; 5, 6 – 0.01. Воздушная атмосфера, комнатная температура

Однако в условиях возрастающего значения водородной энергетики и ее важнейшей составляющей – получение газообразного водорода (речь идет об аккумулировании водорода твердой фазой) система с $\rho \rightarrow 1$ представляется наиболее благоприятной. Таким образом, независимо от той или иной ситуации принципиально важно изучение характера воздействия факторов, влияющих на величину ρ .

С ростом концентрации воды в смешанном растворителе до 5,2 мас.% происходит практически полная пересольватация протонов, а поверхность стали находится в условиях смешанной сольватации (H_2O_{anc} , $C_2H_5OH_{anc}$) [3, 4]. Однако оба эти фактора практически не сказываются на качественной картине, характеризующей закономерности РВВ и диффузии водорода через мембрану (рис. 26 и 3), хотя количественные изменения имеют место. Так, с ростом E_{κ} снижение C_{H^+} обусловливает уменьшение i_H , но в том и другом случае i_H после большего или меньшего возрастания переходит в область независимости i_H от E_{κ} (рис. 3, кривая 2 и 4). Одновременно снижение C_{H^+} вызывает существенный рост ρ (рис. 26, кривые 1 и 2).

Рис. 2. Связь величины ρ с потенциалом входной стороны стальной мембраны в условиях ее катодной поляризации и концентрацией HC1 в этанольных растворах с содержанием воды, мас.%: а – 0,45; б – 5,20; в – 18,00. Состав электролита: x M HC1 + (1 – x) M LiC1. x, M: 1 – 0,99; 2 – 0,10; 3 – 0,01. Комнатная температура, атмосфера – воздух

Рис. 3. Влияние катодного потенциала входной стороны стальной мембраны на скорость PBB (1, 3) и поток диффузии водорода через нее (2, 4) из этанольных растворов с составом электролита *x* M HCl + (1 – *x*) M LiCl. $C_{H_2O}^{Hex}$ = 5,2 мас.%. *x*, моль/л: 1, 2 – 0,99; 3, 4 – 0,1. Воздушная атмосфера, комнатная температура

Рис. 4. Влияние катодного потенциала входной стороны стальной мембраны на скорость PBB (1, 3, 5) и поток диффузии водорода через нее (2, 4, 6) из этанольных растворов с составом электролита *x* M HCl + (1 - x) M LiCl. $C_{H_2O}^{ucx} = 18$ мас.%. *x*, моль/л: 1, 2 – 0,99; 3, 4 – 0,1; 5, 6 – 0,01. Воздушная атмосфера, комнатная температура

Последующий рост $C_{воды}$ в смешанном растворителе до 18 мас.% не меняет сольватной формы протонов, разряжающихся на входной стороне стальной мембраны по реакции Фольмера, но существенно повышает $\theta_{воды}$ в условиях смешанной поверхностной сольватации ВСМ [3, 4]. Однако последний фактор практически не сказывается на закономерностях РВВ и диффузии водорода через мембрану (рис. 2в и 4). В 0,99 М растворе HCl i_k повышается с увеличением потенциала входной стороны мембраны в катодную область E_{κ} (рис. 4, кривая 1). Поток диффузии $i_{\rm H}$, вначале возрастая симбатно изменению i_k , затем перестает зависеть от величины катодной поляризации (рис. 4, кривая 2). Величина р вновь снижается по мере увеличения E_{κ} (рис. 2в, кривая 1).

С уменьшением C_{H^+} на порядок существенно затормаживается РВВ (рис. 4, кривая 3), но растут i_{H} и р (кривые 4 рис. 4 и 2 рис. 2в). При последующем десятикратном уменьшение $C_{\text{H}^+_{\text{roby}}}$ наблюдается снижение значений i_k и i_H , причем обе функции $i_k = f(E_\kappa)$ и $i_H =$ $= f(E_{\kappa})$ после незначительного возрастания переходят в области независимости от E_{κ} (рис. 4, кривые 5, 6). Одновременно снижение C_{HCl} вызывает существенный рост ρ при E_{κ} = const (рис. 2в, кривые 1, 2, 3), т. е. даже при более, чем трехкратном увеличении $C_{\rm H_2O}$ и $\theta_{\rm H_2O}$ картина вновь остается прежней (рис. 2). Лишь на кривых 1 и 3 рис. 2в наблюдаются короткие участки независимости (AB) ρ от E_{κ} . Вероятно, при более положительных потенциалах можно было бы наблюдать максимум, но он оказывается недосягаемым, т. к. дальнейший рост потенциала приводит к переходу в анодную область. Если это предположение верно, то наличие экстремума на зависимости $\rho = f(E)$ не зависит от направления внешнего поляризующего тока, а в большей мере определяется зарядом поверхности входной стороны стальной мембраны.

Однако если снижение концентрации $C_{\rm H^+}$ чаще всего увеличивает ρ , то влияние присутствия KCNS более сложно и зависит как от кислотности среды, так и природы растворителя (рис. 5).

В присутствии 18 мас.% H_2O и 0,1 моль/л ионов водорода наличие CNS⁻ снижает величину ρ (кривые 1, 3 рис. 5а), либо на нее практически не влияет (0,99 моль/л H⁺, кривые 2, 4 рис. 5а). В чисто водных средах, напротив, введение KCNS повышает ρ (кривые 1, 3 и 2, 4 рис. 5б). Для полноты картины отметим, что в этих условиях снижение C_{H^+} на порядок практически не влияет на величину ρ .

Обобщенные данные, характеризующие связь величины ρ с $C_{\rm H^+}$, $C_{\rm H_2O}$, $C_{\rm CNS^-}$ и катодным потенциалом входной стороны стальной мембраны, приведены в табл. 1.

Рис. 5. Влияние величины катодной поляризации входной стороны стальной мембраны на долю адсорбированного водорода ρ , удаляемого абсорбцией в стальную мембрану, из этанольных (а, 18 мас.% H₂O) и водных (б) растворов с составом электролита *x* M HCl + (1 – *x*) M LiCl в отсутствие (1, 2) и присутствии (3, 4) в растворе 1 мМ KCNS. *x*, моль/л: 1, 3 – 0,1; 2, 4 – 0,99. Атмосфера – воздух; комнатная температура

$C_{\rm H_{2}O}$,	$C_{11^{+}}$,	$C_{\rm CNS^-}$,	ρ при <i>E</i> _κ , В			ρ при ΔE_{κ} , В		
мас.%	п моль/л	сиз ммоль/л	-0,25	-0,33	-0,40	0,05	0,10	0,15
0,45	0,01	_	0,79	0,47	_	0,83	0,78	0,70
	0,10	_	0,20	0,09	_	0,32	0,29	0,12
	0,99	-	0,06	0,04	-	0,05	0,04	0,02
5,2	0,10	-	0,23	0,12	0,07	0,24	0,15	0,12
	0,99	-	0,09	0,04	-	0,12	0,10	0,06
18,0	0,005	-	*	0,56	0,42	0,56	0,42	0,38
	0,01	-	*	0,87	0,56	0,86	0,49	0,45
	0,10	-	0,47	0,23	0,11	0,47	0,38	0,23
		1	0,26	0,20	0,10	0,26	0,24	0,15
	0,99	—	0,09	0,04	0,03	0,12	0,05	0,04
		1	0,11	0,06	0,04	0,13	0,07	0,05
100	0,10	—	0,06	0,03	0,01	0,06	0,04	0,02
		1	0,28	0,09	0,05	0,26	0,09	0,05
	0,99	_	0,04	0,03	0,01	0,05	0,04	0,03
		1	0,09	0,05	0,02	0,09	0,06	0,04

Связь величины ρ в этанольных растворах HCl (состав электролита *x* M HCl + (1 – *x*) M LiCl) с $C_{\text{H}_2\text{O}}$, C_{H^+} ,

 C_{CNS^-} и потенциалом при катодной поляризации входной стороны стальной мембраны

* - величина потенциала коррозии отрицательнее указанного потенциала.

Таким образом, снижение ρ с ростом катодной поляризации и увеличение с уменьшением кислотности носит общий характер. Вид функций $\rho = f(E_{\kappa})$ и $\rho =$ $= f(C_{\text{HC1}})$ не определяется природой растворителя и замедленной стадией PBB, сольватной формой разряжающегося протона и видом частиц, сольватирующих поверхность входной стороны стальной мембраны. Следует полагать, что во всех случаях характер этих зависимостей определяется одними и теми же факторами [5].

Так, для интерпретации характера *связи* р с C_{H^+} учтем, что на железе существуют две формы адсорбированного водорода [6, 7] – надповерхностная $\left(\mathrm{H}^r_{\mathrm{adc}}\right)$ и подповерхностная $\left(\mathrm{H}^s_{\mathrm{adc}}\right)$. Их двумерные концентрации θ^r_{H} и θ^s_{H} находятся в равновесии (1)

$$\theta_{\rm H}^r \leftrightarrows \theta_{\rm H}^s \,. \tag{1}$$

В [8] постулировано, что на скорость реакции рекомбинации влияет степень заполнения поверхности – $\theta_{\rm H}^r$, а на поток диффузии водорода на входной стороне мембраны – $\theta_{\rm H}^s$. Величины $\theta_{\rm H}^r$ и $\theta_{\rm H}^s$ существенно различно зависят от статистической суммы состояний системы (СССС). Характер такой связи $\theta_{\rm H}^i$ с величиной γ , используемой в [6], и, в свою очередь, являющейся функцией СССС и меняющейся в широком интервале, для никеля приведен на рис. 6 (кривые построены по данным [6]). Отметим, что коэффициент γ представляет собой отношение

$$\gamma^i = \frac{\theta_{\rm H}^i}{1 - \theta_{\rm H}^i} \,,$$

где *i* – *r* или *s*.

Когда в соответствии со статистической суммой системы Іду находится в интервале АБ (рис. 6), величина р мала, но должна иметь тенденцию к повышению с ростом Іду, т. к., с одной стороны, $\theta_{\rm H}^{s} << \theta_{\rm H}^{r}$, но с другой – степень заполнения поверхности формой ${\rm H}_{\rm adc}^{s}$ растет быстрее, чем ${\rm H}_{\rm adc}^{r}$. Подобная картина, видимо, удовлетворительно коррелирует с $C_{\rm H^+}$ в интервале 0,99–0,10 моль/л (рис. 2). С дальнейшим снижением кислотности среды на порядок Іду достигает значений интервала БВ (рис. 6), и $\theta_{\rm H}^{s}$ начинает возрастать гораздо быстрее, чем $\theta_{\rm H}^{r}$ и даже превышает ее по абсолют-

ной величине. В этом случае р быстро растет, что и имеет место экспериментально (рис. 2).

Рис. 6. Зависимость θ_{H}^{r} (1 и 2) и θ_{H}^{s} (3 и 4) от lgy на никеле по данным [6]. 1 и 3 – 50 °C; 2 и 4 – 0 °C

Рис. 7. Влияние катодного потенциала входной стороны стальной мембраны (а) и концентрации хлористого водорода (б, $E_{\kappa} = -0.34$ В) на долю адсорбированного водорода ρ , удаляемого абсорбцией в мембрану, из этанольных растворов с составом электролита x M HCl + (1 – x) M LiCl. $C_{\rm H_2O}^{\rm Hcc}$ – 18 мас.%. x, моль/л: 1 – 0,005; 2 – 0,01; 3 – 0,1; 4 – 0,99

Исходя из принятых допущений, при величинах Ідү в интервале ВГ (рис. 6) ρ вновь должен снижаться, формально приближаясь к 0,5, что удовлетворительно воспроизводится экспериментально в 0,005 М этанольных растворах HCl с $C_{\rm H_2O}^{\rm ucx}$ = 18 мас.% (рис. 7). Однако такая картина будет иметь место только в том случае, если i_k и $i_{\rm H}$ линейно зависят соответственно от $\theta_{\rm H}^r$ и $\theta_{\rm H}^s$ и на них не оказывают существенного влияния многочисленные вторичные факторы. Тем не менее, такой подход позволяет качественно удовлетворительно интерпретировать экспериментально наблюдаемую картину. Вид функции $\rho = f(C_{\rm HCl})_{E_x}$ показан на рис. 76.

выводы

1. В условиях катодной поляризации входной стороны стальной мембраны в растворителях различной природы и состава в изученных интервалах C_{H^+} , C_{CNS^-} и потенциалов скорость катодной реакции выделения водорода i_k систематически увеличивается с ростом E_{κ} и кислотности среды.

2. Величина $i_{\rm H}$ в области малой катодной поляризации возрастает во всех изученных средах, а затем перестает зависеть от величины катодного сдвига потенциала, либо зависимость $i_{\rm H} = f(E_{\rm k})$, проходя через максимум, представляющий собой более или менее протяженное плато, также переходит в область E_{κ} , где $i_{\rm H}$ = const.

3. Величина ρ , как правило, снижается с ростом катодной поляризации. С уменьшением $C_{\text{H}}^{+}_{solv}$ (E_{κ} =

= const) ρ систематически возрастает и стремится к максимуму, близкому к 1, в 0,01 М растворах HCl.

 Эффект катодной поляризации удается интерпретировать с учетом существования различных форм (H^r, H^s) адсорбированного атомарного водорода и энергетической неоднородности поверхности углеродистой стали.

ЛИТЕРАТУРА

- Кардаш Н.В., Батраков В.В. Влияние состава раствора на диффузию водорода через металлическую мембрану // Защита металлов. 1995. Т. 31. № 4. С. 441-444.
- Физико-химические методы анализа / под ред. В.Б. Алесковского и К.Б. Яцимирского. Л.: Химия, 1971. 424 с.
- Вигдорович В.И., Матвеева М.В. Влияние концентрации ионов водорода, добавок воды и KCNS на кинетику PBB на железе армко и диффузию водорода через стальную мембрану в этанольных растворах HCl // Вестн. Тамб. ун-та. Сер. Естеств. и техн. науки. Тамбов, 2003. Т. 8. Вып. 5. С. 785-790.
- Вигдорович В.И., Цыганкова Л.Е., Вигдорович М.В., Матвеева М.В., Алехина О.В. Влияние природы растворителя и стимуляторов наводороживания на кинетику РВВ на железе и диффузию водорода через стальную мембрану // Вестн. Тамб. ун-та. Сер. Естеств. и техн. науки. Тамбов, 2004. Т. 9. Вып. 3. С. 337-355.
- Вигдорович В.И., Цыганкова Л.Е., Шель Н.В., Зарапина И.В., Матвеева М.В. Влияние катодной поляризации стальной мембраны и кислотности спиртовых растворов НСІ на соотношение скоростей реакции выделения водорода и его твердофазной диффузии // Электрохимия. 2007. Т. 43. № 7. С. 843-850.
- Хориути Д., Тоя Т. Поверхностные свойства твердых тел / под ред. М. Грина. М.: Мир, 1972. С. 11-103.
- Тоя Т., Ито Т., Иши И. Две формы водорода поверхности металла // Электрохимия. 1978. Т. 14. № 5. С. 703-714.
- Вигдорович В.И., Дьячкова Т.П., Пупкова О.Л., Цыганкова Л.Е. Взаимосвязь кинетики восстановления ионов водорода на железе и потока диффузии водорода в углеродистую сталь в кислых растворах // Электрохимия. 2001. Т. 37. № 12. С. 1437-1445.

Поступила в редакцию 14 ноября 2009 г.

Matveeva M.V. Influence of cathodic polarization on hydrogen diffusion through a steel membrane made of ethanol solutions HCl.

Influence of cathodic polarisation of the entrance side of a steel membrane (BCM) and concentration HC1 (0,99–10⁻² mol/l) on a parity of speeds of reaction of allocation of hydrogen and its diffusion through a steel (ρ) in muriatic ethanol solutions with the constant ionic force equal 1 is investigated. It is shown that ρ decreases with shift of potential of the polarizing side of a membrane in a negative side and increases with reduction of $C_{\rm HC1}$. Results are interpreted taking into account degree of filling of a surface by two forms of the adsorbed hydrogen: over-surface H^r_{aac} and under-surface H^s_{aac} .

Key words: steel; hydrogen; category; recombination; membrane; diffusion; speed; cathodic polarisation; ethanol.