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Let N be a complex manifold, G be a real Lie group acting on N by holomorphic automorphisms, and
M be a holomorphically convex domain in N whose skeleton is a single orbit M = G/H. In this article
we consider the problem of a description of these domains in the case of compact G (the noncompact case
is much more complicated). Because of the lack of a term, we shall call such domain a semihomogeneous
domain M over M. Thus we fix the domain and the boundary — a domain may have several ideal
boundaries.

There are many evident examples: the unit disc I) and the upper half-plane C* in C, bounded
symmetric domains and Siegel domains in C". There are also "noncommutative” examples such as
Olshanskii semigroups (semigroups of the type G exp(iC) where G is a real form of a complex Lie group
and C is an invariant cone in the Lie algebra G of G).

The set of all holomorphic and continuous up to the boundary functions on M is, for compact M,
a closed subalgebra A of the Banach algebra C(M), and the evaluating functional at any point of M
defines a maximal ideal of A. Hence there is an embedding of M to the maximal ideal space M 4 of A and
the classification problem has a functional-analytic version: describe maximal ideal spaces of invariant
algebras on homogeneous spaces of compact Lie groups. These problems are not quite equivalent; the
second is, in certain sense, more natural because it often happens that all bounded holomorphic functions
on M may be extended to some ideal analytic components at infinity. Furthermore, the functional-
analytic approach makes it possible to apply the machinery of Harmonic Analysis and Banach algebras.

The problem has a solution for bi-invariant algebras (i.e., function algebras on groups invariant with
respect to left and right shifts). For invariant algebras generated by finite dimensional invariant subspaces
the problem is equivalent to the following one: describe polynomially convex hulls for orbits of compact
linear groups. This subject is closely connected with actions of linear reductive groups or, in other words,
with Invariant Theory.

Classical domains, especially the symmetric ones, are common fields of Complex Analysis, Harmonic
Analysis, Representation Theory, Geometry, other mathematical disciplines. In this article only the
geometrical part of the subject is considered.

Introduction

Siegel domains and their noncommutative analogues. Siegel domains of the first kind (an
equivalent term — tube domains) are domains in C" of the type R" +iInt(C) where C is a convex closed
pointed generating cone in R™ and Int means ”interior”. To construct a Siegel domain of the second
type, one needs spaces C™ and C™, a cone C C R" with the same properties, and a hermitian form h
on C™ with values in C" such that h(z,z) € C for all z € C™ and h(z,z) # 0 for z # 0; the domain is
defined as the interior of the set {(z,w) € C" x C™ : Im z — h(w,w) € C}. In the both cases skeletons
admit simply transitive groups of holomorphic automorphisms: translations in the first case (the skeleton
is R") and a two-step nilpotent group of affine transformations in the second one (the skeleton is the
set Im z — h(w, w) = 0). There is a generalization of Siegel domains of the second kind with a graded
nilpotent Lie algebra instead of a two-step one ([21]).

Any bounded homogeneous domain in C" is biholomorphically equivalent to a Siegel domain ([30]).
Domains of the second kind are distinguished by the property to have a nontrivial C R-structure in
skeletons, i.e. nontrivial complex linear subspaces in real tangent spaces (at the point (0,0) this is the
subspace {0} x C™).
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Olshanskii semigroups (or complez Lie semigroups) are noncommutative analogues of Siegel domains
of the first kind. Let G be a real form of a complex Lie group G, G be the Lie algebra of G, and C
be a convex closed pointed Ad(G)-invariant cone in G (we shall say ”invariant cone” for a cone with
all these properties). Their structure is now well-understood. The set G exp(iC) is a subsemigroup of
G® and its interior is a semihomogeneous domain with the skeleton G. In a certain sense, Olshanskii
semigroups may exists even when the group G has no complexification; for example, this is true for the
universal covering group of SL(2, R). These semigroups have the property that representations of discrete
holomorphic series extends to them and it was the reason for their consideration in [8] where a program
for developing of Harmonic Analysis on them was introduced.

Noncommutative analogues of Siegel domains of the second type are less known. A simple example
was recently pointed out by Latypov.

EXAMPLE 1. Let M be the intersection of a generic coadjoint orbit in sl(2, C) with the ball of radius r
for r greater than the distance from the orbit to the origin (with respect to the SU(2)-invariant hilbertian
norm). Then M is a semihomogeneous domain whose skeleton is a single SU(2)-orbit. The skeleton has
a nontrivial C'R-structure (this is easy to check by a comparison of dimensions); M is not holomorphi-
cally equivalent to a Siegel domain of the second kind because its automorphisms group coincides with
Ad(SU(2)) = SO(3). The algebra A, of all continuous in clos M and analytic in M functions coincides
with the uniform closure on M of the algebra of polynomials ([17]).

Invariant algebras. Invariant algebras were studied by many authors. In general, it was a part of
attempts to extend the remarkable Function Theory in the Unit Disc ID to several complex variables. It
turns out that the multidimensional theory is quite different from one-dimensional; moreover, there is a
significant difference between the Function Theory in the polydisc and in the ball. It was a reason for the
consideration of various generalizations and the usage of additional tools such as Harmonic Analysis and
Banach algebras. The setting of invariant algebras is a natural field for this machinery. We shall outline
only one theme. The Wermer maximality theorem states that the disc-algebra (the algebra of analytic
and continuous up to the boundary functions in D) is a maximal subalgebra of C(T) where T is the unit
circle. A similar assertion for balls and polydiscs is not true; but it is true in the class of Mobius-invariant
function algebras on the skeletons ( [3],[14]; the Mdbius group = group of holomorphic automorphisms).
In fact, it is possible to give a complete list of these algebras for the ball ([20], see [28]). Here is an example
of the usage of the results of this kind: suppose that a continuous in ID function f has the property to
have an analytic continuation from any circle of a fixed hyperbolic radius inside I, then f is analytic in
D. Proof: the set of such functions is a separating Mobius-invariant proper subalgebra of C(ID) closed
in the topology of the uniform convergence on compact sets; by [27] (or [13]) it is either algebra of all
analytic or algebra of all antianalytic functions, and the second case obviously cannot occur. The results
of this type for balls are contained in ([28]). This book also contains a description of U(n)-invariant
algebras on spheres in C". The maximal ideal spaces of these algebras described in [16] and [12] give
examples of semihomogeneous domains of the first kind over spheres which are not equivalent to Siegel
domains (see also the remark after the proof of Theorem 1).

Roughly speaking, if the situation is far from abelian then the family of invariant algebras is poor.
For example, all bi-invariant algebras on semisimple compact groups are self-adjoint with respect to the
complex conjugation; the same is true for SO(n)-invariant algebras on spheres in R™ ([34], [7], [18]). If a
bi-invariant algebra has no orthogonal real measures then the group is abelian ([25]). The abelian case,
being almost trivial from the point of view of (noncommutative) Harmonic Analysis, is interesting for
Function Theory. The set of characters of a compact abelian group G which are contained in an invariant
algebra is a semigroup S and the maximal ideal space is 1somorphic to the semigroup of homomorphisms
of S to the multiplicative semigroup clos) with pointwise multiplication and convergence. Here is an
example of the algebras considered in [4], [19], [6], ch. 7, [15].

EXAMPLE 2. Let Sy = {(n,m) € Z* : n+4 ma > 0} where o > 0 is an irrational number. Then N
is a semigroup, the maximal ideal space of the corresponding invariant algebra A, on the dual group
T? is foliated by analytic half-planes whose boundary one-parametrical groups are dense windings of T?.
This A, is a maximal subalgebra of C(Tz) and may be realized as an algebra of analytic almost periodic
functions on a half-plane (the uniform closure of linear combinations of exponents e("*+m2) 5L ma > 0).
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Conjectures, a problem, and two theorems

Bi-invariant algebras.  The consideration of bi-invariant algebras in the paper [9] was based on the
following observation: there is a natural structure of a compact topological semigroup in the maximal
ideal space of an invariant algebra. The multiplication may be defined via the convolution of representing
measures. The maximal ideal spaces of nontrivial bi-invariant algebras on a compact group G also admit
a foliation by analytic leafs isomorphic to Olshanskii semigroups. Only one such subsemigroup has the
boundary containing the identity e of G.

The maximal ideal space M 4 of a bi-invariant algebra A contains at most countable subsemigroup
7 consisting of pairwise commuting idempotents such that any idempotent in maximal ideal space is
conjugated with some ¢+ € Z. There is the zero 19 € Z. The algebra A is antisymmetric (a function
algebra is called antisymmetricif it contains no real nonconstant functions) if and only if ¢ is the zero of
M. Any ¢ # 1y corresponds some Olshanskii subsemigroup. We shall call the semigroup corresponding
to e the main Olshanskii semigroup.

The author suppose to publish proofs of these results contained in hardly accessible articles [10],[11]
in some of forthcoming papers.

A class of invariant algebras. Let H be a closed subgroup of a compact group G and M = G/H.
The averaging by right over H (i.e. the operator Ay f(g) = [ f(gh)dh where dh denotes the Haar
measure on ) of any bi-invariant algebra on G gives an invariant algebra on M. Lets denote by 2 the
class of all invariant algebras which may be obtained by this way. Their maximal ideal spaces may be
received by a kind of holomorphic projection from maximal ideal spaces of bi-invariant algebras. In other
words, if A € 2 then there exists a semigroup (the maximal ideal space of a bi-invariant algebra on G)
acting on M4 transitively (this will mean that the orbit of any point in M coincides with M 4). Any
U(n)-invariant algebra on the sphere in C" belongs to 2 ([12]) but algebras of Example 1 are not in 2.
Antisymmetric algebras of class 2 has the property that G has a fixed point in the maximal ideal space
(it corresponds to the zero of the maximal ideal space of the bi-invariant algebra).

Let A and B D A be commutative Banach algebras. The embedding A — B induces the dual mapping
Mp — M, . Weshall say that A and B have the same maximal ideal spaces if this mappingis a bijection.

CONJECTURE 1. For any invariant algebra A on M = G/H which has a G-fized point in M, there
exists an invariant algebra B € U on M which includes A and has the same mazimal 1deal space.

If G is semisimple then any bi-invariant algebra on G is self-adjont. Thus the conjecture would imply
that A has an additional group of symmetry.

Finitely generated invariant algebras and polynomially convex hulls. A Banach algebra A is
generated by aj,...,a, € A if the algebraically generated by ay,...,a, subalgebra is dense in A. If A is
commutative then the mapping « : ¢ — (¢(a1),...¢(an,)) is a homeomorphic embedding of M 4 to C".

Further, if A is an uniform algebra on compact @ then a(M,4) = a(Q), where

X ={z€C":1p(z)| < sup |p(z| for all polynomials p}
z€X

is the polynomially convez hull of X C C".
We shall say that A is a finitely generated invariant algebra if it is generated as an uniform algebra by
a finite dimensional invariant vector space F' C C'(M). The evaluating functional at a base point m € M

defines an equivariant embedding o : M — F* and My4 may be identified with a(M). This means
that the problem of the description of maximal ideal spaces for finitely generated invariant algebras is
equivalent to the following one.

PrROBLEM. Describe polynomially convex hulls of orbits of compact linear groups.

The complexification G of (G is a reductive algebraic linear group. There is a developed theory for
actions of such groups ([31], [32]). Let v € V = F*, O = Gv, and O¢ = G®. By the Hilbert-Mumford
criterion, if 0 € clos (O%) then there exists an one-parametrical group v in G®with the same property (i.e.
0 € closyv). If 0 & clos (O€) then there exists a G®invariant polynomial which separates O from zero.
The set clos (%) consists of a finite number of orbits and there is the unique closed one among them.
The closure of an G'%orbit in the Zariski topology coincides with the closure in the real one. Hence

O C clos (0°).
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We may assume that there is no nontrivial G-fixed points in V. Then G has a fixed point in M, if
and only if 0 € clos (O®). Thus Conjecture 1 means that there exists a semigroup S of contractions of
O = M such that Sv = @ (the action of G may be extended to the action of the maximal ideal space
of a bi-invariant algebra; in general, the extension is not linear and the group is greater than ). This
would be an analogue of the Hilbert-Mumford criterion for invariant algebras.

THEOREM 1. Let p be a nontrivial irreducible representation of SL(2, C) in a finite dimensional complez
linear space V, G = p(SU(2)), v € V, A be the closure of the algebra of polynomials in C(Q). If
0 € clos (O%) and the stabilizer of v in G® = p(SL(2,C)) is trivial then A admits an extension B € 2
with the same mazimal ideal space; in other words, Conjecture 1 is true in this setting.

Any invariant algebra may be approximated by finitely generated invariant algebras — it is the closure of
an increasing sequence of them. However, their maximal ideal spaces may have new properties. Algebras
A, of Example 2 are not finitely generated ones and such effects as the irrational winding cannot occur
for finitely generated invariant algebras. For a general antisymmetric bi-invariant algebra the main
Olshanskii semigroup need not be dense in M 4 but for finitely generated invariant algebras it is always
dense.

Invariant algebras without proper invariant ideals. Algebras of Example 1 has no proper
invariant ideals. From the other hand, finitely generated invariant algebras of the class 2 have many
proper invariant ideals corresponding to the G-fixed point in M 4 (the maximal one and its powers).

CONJECTURE 2. Let G, H, M be as above and A be a separating antisymmetric invariant algebra on M
without proper invariant ideals. Then there exist a representation of G in a finite dimensional complex
linear space V, a closed orbit O in V, and an equivariant embedding M — O such that M, = O.
Furthermore, @ contains the unique G-orbit M' such that the algebra Alpp is self-adjoint, there is an
involutive antilinear automorphism of A commuting with G such that M' is ezactly the set of all fized
points for the corresponding reflection in Ma, and for any point m' € M' there exists a poinl m € M
such that m € H'm, where H' is the stabilizer of m'.

In Latypov’s example, M’ is the nearest to zero SU(2)-orbit in SL(2, C)-orbit in sl(2,C). Let k, e, f
be the sly-triple in the standard realization, @€ and O be orbits of h for SL(2, C) and SU(2) respectively
(O° is the set Tr Z? = 2, the equation Tr Z*Z = 2 distinguishes O in OF). The complex linear tangent
space T at h to OF is Ce + Cf and (h+ 7) N OF is the union of two lines h + Ce and h + Cf. The
line h + Ce intersects the ball Tr Z*Z < 2 + r? by the disc of radius r in C and the same is true for the
second line. The homogeneous space M is SU(2)-orbit of h + re; this is the intersection of OF and the
sphere Tr Z*Z = 2+ r? (this set is connected). The reflection of the conjecture is Z — Z*. It transposes
the two families of lines above. Further, H' = exp(iRh), H = ker Ad = {1, —1}; for m = h one may set
m'=h+reorm' =h+rf.

THEOREM 2. Let G,veV, @, and A be as in Theorem 1, and the stabilizer of v in G is connected.
Then A has no proper invariant ideals if and only if OF is closed. In this case, either A is isomorphic to
an invariant subalgebra of some algebrh of Ezample 1 or A = C(O).

The following conjecture concerns the reconstruction problem for a general invariant algebra by the
two opposite cases considered above.

CONJECTURE 3. Any invariant algebra contains the unique mazimal invariant ideal.

This is an analogue of the following fact: the closure of an orbit of a reductive complex linear group
contains the unique closed orbit.

Proof of Theorem 1.  We use some facts of the theory of uniform algebras ([6], Ch. 3). There is
the direct connection between the algebraic constructions and analytic ones; for example, the algebra of
all bounded on @€, holomorphic in the relative interior of @ N O° and continuous on @ N OF functions
is the closure of the normalization of the algebra of polynomials restricted to @°. The description of
maximal ideal spaces if U(n)invariant algebras on balls ([16]) has a great overlap with the classification
of algebraic SL(2, C)-embeddings (the description can be found in [32], Ch. 3, §4) — this fact seems to
be not noted else.

If the closure of a three-dimensional SL(2, C)-orbit OF contains 0 then it consists of three orbits: OF,
the two-dimensional orbit OF of the highest vector v;, and {0}. By the Hilbert-Mumford criterion, there
exists complex one-dimensional algebraic C-torus ¢ (i.e. homomorphism ¢ : C* — G®where C* = C\{0})
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such that lim,_. {(z)v = 0. Let ¢ be the corresponding one-parametrical multiplicative group of right
shifts acting on O = G*. Since ¢, commutes with G,

Iirré (r(z)u=0 forall ueO°. (1)

In particular, this means that 0 € O because this mapping defines the embedding to O of the family
¢-(D\{0})uU {0}, u € O, of analytic discs with boundaries in O. Moreover, (1) implies that ¢ (z)(@n
0°) CONO* for all z € D, z # 0. Thus the action of the group G = G x T (with T = {((2) : |2] = 1})
on @ is well-defined as well as the action of its complexification on @*. This action extends continuously
to clos O¢ by the setting (r|oc = (loe

Let B be the closure in C(Q@) of holomorphic in the relative interior of © N O° and continuous on
clos OF functions on clos @€ which coincides with some function in A on @F. We shall prove that
Banach algebra B is the desired G-invariant extension of A and that B € 2. First off all, note that B
is G-invariant. Indeed, the subalgebra By of B consisting of functions va.mshmg on clos (’)“: \ OF and
holomorphic on @F is (.-invariant because ¢, continuously extends to clos OF; since ¢ and (. coincides
on clos @€\ OF, fo( — fo(, € By for all f € B, hence B is also (r-invariant.

A function f on the maximal ideal space of an uniform algebra A is called A-holomorphic at the point
z € My if it can be uniformly approximated by functions in A on some neighborhood of z in M4; f
is A-holomorphic on the set X if it is A-holomorphic at any point of this set. By [6], Ch. 3, §9, the
following assertion holds: if A is an uniform algebra and f is a continuous function on M, which is
A-holomorphic outside the set of its zeroes then the mazimal ideal space and the Shilov boundary of the
closed subalgebra of C(M ) generated by A and f coincide with the mazimal ideal space and the Shilov
boundary of A respectively. The hypothesis that B has an additional maximal ideal or that some function
in B attains outside @ a value which is greater than the uniform norm on O leads to a contradiction with
this result. Indeed, suppose that there exist f € B, ¢ € Mp, and *t € M4 = O such that p(a) = a(z)
for all @ € A but t,o(_f) # f(z). Since B = clos (A + By) we may assume that f = a + b where a € A and
b € By. The uniform algebra B’ on 4] generated by A and b has the same maximal ideal space because
b is clearly A-holomorphic at any point z of @ N O (it can be extended analytically to a neighborhood
of z in V), and this is the contradiction. The assertion concernmg the ShIIOV boundary is proved by the
same arguments with the assumption sup{|f(z)| : = € O} > sup{|f(z)| : = € O} instead of p(f) # f(z).

It remains to prove that B € 2. Lets consider the standard reahzatlon for representations of SL(2, C).
The space V can be identified with the space of homogeneous polynomials of the degree n = dimV — 1
of two complex variables z,w and SL(2,C) acts by u(z,w) — u(az + bw,cz + dw), ad — be = 1. The
assumption ((¢)v — 0 as t — 0 implies that, in suitable coordinates such that {(t)v(z, w) = v(tz,t~ w),

v(z,w) = 2Pw!? + 2Pt +¢,2", p+qg=n, p>gq (2)

Let k,l be positive integers, k > [. The mapping Ag; : ¢ — v(t'z,t 7%z + t~'w) defines an analytic
disc in @OF for which the following conglusion holds: .

lp=kq < ‘lirré.\ki;(t) =uv, and Ilp>kq < tlin% Aei(t) =0 (3)

where v (z, w) = 2" is the highest vector. A direct calculation shows that the same is true for any g from
the stabilizer of v and the disc gAx i(f)v (the stabilizer of z" is the group (z,w) — (ez,tz+&~'w) where
t € C and €™ = 1). Let p, be this representation in the space Pp, of polynomials of the degree m and ¢,
be the r-th power of the natural one-dimensional representation of T. Any irreducible representation of
the group G has the form pp, x = pm ® ¢y, with integer r and m € Z* where Z* is the set of nonnegative
integers, and acts in the space Pp; if n even then m also must be even The stationary subgroup

a(t) = (t) o (- (1), |t| = 1, of the point v acts on monomials by o(t) : zFw! — t¥—1-7 2kl Hence it has
a fixed point in Py, if and only if |r| < m and m — r is even and this is the monomial

il
vmr(z,w) = 2¥w!, where k= %(m+ thel = §(m —r). (4)

The spaces H(k,l) of matrix elements of the type (pm, ,(g)vm r, &), considered as functions on O, defines

the decomposition of the quasiregular representation of G in L?(0) (the notation corresponds to the
notation of [28], Ch.12).
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y (2) and (3),
lim f(Apq (1) =0 forall f€ H(k,1) < ":E < %. (5)

In other words, H(k,!) C Bg if and only if Ip < kq. Hence By is the closed linear span of H(k,!) where
k + [ is even if n is even and Ip < kq. Since for all @ = 1, ..., ¢ monomials 2P*%w7=% defines subspaces
of By, it follows from (2) that B is generated by By and H(sp,sq), s € Z* (one can exclude these
monomials consequently starting with ™). Let B be the space on G generated by all matrix element of
representations pm r4a, Where m,r are as in (4) with Ip < kq, a € Z* (and is even if n is even), and
Ps(p+9).s(p—q) & € Z*. Then the right averaging of B by ¢ gives B. This set of representations contains all
irreducible components of their tensor products, hence the closure of B in C(G) is a bi-invariant algebra,
and the proof is finished.

Remark. Since (; is the group of right shifts, the action of G on O may be identified with the action
of U(2). It follows from [12] that @ N O° c01nc1des with the orbit of the point v under the action of the
semigroup

Sa = {M € GL(2) : |IM|ll|M~"||* < 1}

where a = ¢/p and the norm is the operator norm with respect to the standard scalar product in C?.
For any « € [0,1) there exists an invariant algebra on the sphere S® C C? whose maximal ideal space
is the one-point compactification of an orbit of S, in some linear space; these algebras are not finitely
generated.

Proof of Theorem 2. If OF is not closed then it contains the unique closed orbit @, and there exist
polynomials vanishing on O but nontrivial on @. Conversely, the set of common zeros of polynomials in
the proper G-invariant ideal is G*invariant and closed; since O C closOF, O cannot be closed in this
case.

If @° is closed and two-dimensional then either the real dimension of @ is 2 or O has a nontrivial
complex line in the tangent space to any point of @. In the first case O is the two dimensional sphere
or real projective plane and A = C(Q@) by [18]. In the second one, functions in A satisfies some invariant
C R-conditions. By [17], A is isomorphic to some subalgebra Example 1 or to a subalgebra of the algebra
of analytic functions in the unit ball in C*. The last possibility cannot occur because G has a fixed point
in M 4 whence A contains a nontrivial invariant ideal.

Let @€ be three-dimensional. Then the stabilizer of a point v € OF is trivial by the assumption
of the theorem, @% may be identified with G* and O with its maximal compact subgroup G. Hence
there exists an antiholomorphic involution in O® commuting with G with @ as the set of all its fixed
points. This means that the restriction to @ of the algebra of all analytic in @ functions is self-adjoint
with respect to the complex conjugation. Since O is closed and smooth, any analytic in O function
may be extended analytically to a neighborhood of O in V. It remains to use the following well-known
fact from the approximation theory: any analytic in a neighborhood of a polynomially convex compact
set K function can be approximated by polynomla.ls and to finish the proof with the Stone-Weierstrass
theorem.
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