$\mathrm{MCS}\ 22\mathrm{E47}$

Invariant finite-dimensional spaces of functions on two-dimensional algebras ¹

© D. S. Tugaryov

S.-Petersburg Acad. University, S.-Petersburg, Russia

A description of finite dimensional spaces of functions on algebras of generalized complex numbers invariant with respect to a motion group is presented

Keywords: two-dimensional algebras, groups of motions, Laplace operator

Let \mathcal{A} be an algebra of generalized complex numbers z = x + iy, where $x, y \in \mathbb{R}$, with a relation $i^2 = \alpha + 2\beta i$. It is isomorphic to one of three algebras \mathbb{C} , \mathbb{D} , Λ : the algebra of complex $(i^2 = -1)$, double $(i^2 = 1)$ and dual $(i^2 = 0)$ numbers respectively. For a number z = x + iy, the number $\overline{z} = x - iy$ is called conjugated to z. As coordinates on \mathcal{A} one can also take z and \overline{z} .

The exponential function e^z is defined as the sum of a series:

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \,.$$

Let G be the group of "motions" of the algebra \mathcal{A} : it is generated by parallel translations $z \mapsto z + a$, $a \in \mathcal{A}$, and "rotations" $z \mapsto e^{it}z$, $t \in \mathbb{R}$.

The Laplace operator

$$\Delta = \frac{\partial^2}{\partial z \partial \overline{z}}$$

is invariant with respect to the group G. In coordinates x, y on algebras \mathbb{C} , \mathbb{D} , Λ the Laplace operator is relatively

$$\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial u^2}, \quad \frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial u^2}, \quad \frac{\partial^2}{\partial x^2}$$

For the algebra Λ , an invariant operator is also $\Delta_1 = \partial/\partial x$.

 $^{^1}Supported$ by the Russian Foundation for Basic Research (RFBR): grant 09-01-00325-a, Sci. Progr. "Development of Scientific Potential of Higher School": project 1.1.2/9191, Fed. Object Progr. 14.740.11.0349 and Templan 1.5.07

Let us describe finite dimensional spaces V of functions $f \in C^{\infty}(\mathcal{A})$, invariant with respect to G.

A space V, invariant with respect to G, is called *indecomposable*, if it cannot be represented as a direct sum of subspaces $V_1 \bowtie V_2$, invariant with respect to G.

Let us call an indecomposable space V, invariant with respect to G, weakly indecomposable, if there are no subspaces V_1 and V_2 of V, invariant with respect to G, such that $V/V_0 = V_1/V_0 + V_2/V_0$ where $V_0 = V_1 \cap V_2$.

Theorem 1.1 Let \mathcal{A} be \mathbb{C} or \mathbb{D} . Any finite dimensional weakly indecomposable invariant with respect to G space V consists of polynomials $f(z,\overline{z})$ of degree $\leq k$ in z and of degree $\leq m$ in \overline{z} . Its dimension is equal to (k+1)(m+1).

Thus, the space V is the space of solutions of a system of equations:

$$\left(\frac{\partial}{\partial z}\right)^{k+1} f = 0, \ \left(\frac{\partial}{\partial \overline{z}}\right)^{m+1} f = 0$$

Let us take a basis in V consisting of monomials $z^r \overline{z}^s$, $r \leq k$, $s \leq m$. In this basis, the Laplace operator Δ has a Jordan normal form, the number of Jordan boxes is equal to k + m + 1. A basis for a Jordan box is formed by monomials $z^r \overline{z}^s$ with fixed difference r - s. For all boxes, their eigenvalues are equal to zero.

Theorem 1.2 Let $\mathcal{A} = \Lambda$. Any finite dimensional weakly indecomposable invariant with respect to G space V consists of polynomials f(x, y) of degree $\leq m$ in y and of degree $\leq k + m$ in x, y together. Its dimension is equal to (k + 1 + m/2)(m + 1).

Thus, the space V is the space of solutions of a system of equations:

$$\left(\frac{\partial}{\partial y}\right)^{m+1} f = 0, \quad \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y}\right)^{k+m+1} f = 0.$$

Let us take a basis in V consisting of monomials $x^r y^s$, $r + s \leq k + m$, $s \leq m$. In this basis, the operator Δ_1 has a Jordan normal form. A basis for a Jordan box is formed by monomials $x^r y^s$ with s fixed, the number of Jordan boxes is equal to m + 1. For all boxes, their eigenvalues are equal to zero.