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Introduction

The radial part of the zonal spherical function ¢,(a) on a Riemannian symmetric
space can be written in the form

oa(a) = Y c(wh)®ya(a) (1)

weW

for generic A, where W is the Weyl group, ¢()\) is the Harish-Chandra c-function,
and ®,(a) is the joint eigenfunction of the radial parts of the invariant differential
operators given by a series expansion ®y(a) ~ a** as a — oco. The coefficients of
the series expansion are determined recursively from the equation for the radial part
of the Casimir operator.

Hashizume [2] proved a formula that is similar to (1) for the class one Whittaker
function given by the Jacquet integral on a real semisimple Lie group. In this
article, we generalize the result of Hashizume for the Whittaker function with one-
dimensional K-type on a simple Lie group of Hermitian type. We also give the
formula for the radial part of the Casimir operator for the Siegel-Whittaker function
on a Hermitian symmetric space of tube type.

We will give the proof in a forthcoming paper.
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§ 1. Jacquet—Whittaker functions

Let G/ K be an irreducible Hermitian symmetric space with G a simple Lie group
of Hermitian type and K a maximal compact subgroup of G. Let G = NAK be
a Iwasawa decompostion. Let g, n, a, £ denote the Lie algebras of G, N, A, K
respectively. Fix an inner product (, ) on a.

Let ¥ denote the restricted root system for G/K, and 7 the positive system
corresponding to N. Let ¥ C X denote the set of simple roots in X*. Let m, be
the multiplicity of @ € ¥ and p = (1/2) Y c5v maa. Let W be the Weyl group
for ¥ and s, € W denote the simple reflection corresponding to a € W. Let ¢(w)
denote the length of w € W, wy € W the longest element of W, and Wy € Nk(a) a
representative of wy.

Let 1 be a normalized nondegenerate unitary character of N and y, a unitary
character of K. Here ¢ € Z if GG is a real form of the simply connected complex Lie
group with the Lie algebra gc, and ¢ € R if G is simply connected. Let A € ag.
Define the function 1, on G = NAK by

Lye(nak) = a**x_4(k), ne€N,ac A kecK.

Define the Jacquet-Whittaker function with one-dimensional K-type by

W\ g) = / n(n) ™ 1ne(@y ng) dn,

N
where dn is a suitably normalized invariant measure on N (cf. [4], [7], [2], [1]).

The following properties characterize the meromorphic continuation in A of
u(a) = Wy(A,m; a):

(i) u(nak) =n(n)u(a) x—e(k), neN,ac A, ke K;

(ii) Du = %(D)Nu, VD € D(G/K), where D;(G/K) is the algebra of
invariant differential operators on the homogeneous line bundle over G/ K associated
with x, and 7, : D(G/K) — S(a)"V the Harish-Chandra isomorphism;

(iii) u(a) is of moderate growth, i.e. |u(a)| < Cexp{k|logal}, C >0, k > 0;

(iv) u(a) ~ xe(Wo) ce(N) @ * as a — oo.

For the root system of type BC,., there are three root length, say long, middle,
and short. If G/K is of tube type, then the root system is of type C, and there are
no short roots. The Harish-Chandra c-function for the one-dimensional K-type x,
is given by

aW—a ] 22T (\,) "

1 1 1 1
aest middle [ [ —( A\, + =mog+ 1) | T [ =Ny + =4
e (2( + 5Ma + )) (2( +gm ))

2722 (N,
< ] (Aay2)

1 1 1 1
acxt, long [° (5()\&/2 + Ema/g + 1+ 6)) r <§(/\a/2 + §ma/2 +1-— 6))

)
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(A @)

a, Q)
The set of the simple roots is given by

where \, = and ¢, is determined by ¢o(p) =1 (cf. [8], [9]).

—~

U={e —e_1,...,e0—e€1,2¢1} (tube type),
U={e —e_1,...,60 —e1,e1} (non-tube type),
where 7 is the rank of the symmetric space. There are three root length, long (2e;),
middle (e; £ e;), and short (e;).
Define numbers M;(\, n; w), w € W, recursively by
M\, m5e) =1,
MZ(/\v n;,w Sa) = M@()‘a UE w) Mg(w)\, n; Sa)7 E(’LU Sa) = é(w) + 1.
Then My(\, n; o), @ € U, are given according to the length of « as follows (cf. [4],

171, 111 121):

(i) If & € ¥ is a middle root, then
Mﬁ()‘v UR Sa) =27 eoc(/\) ea(_)‘)_lv
1 1
ea(A) L =T <§(Aa T + 1)) T <§()\a + ma)) .

(i) If &« = e; € U is a short root (the case of non-tube type), then

My(X, 15 8a) = 27 ea (A, 0) ea(=X,0) 71,

1

(M0 1 =T (2<Aa + %ma +1 +£)) r (1

Z(Aa—l—lma—l—l—é)).

2

(ili) If o = 2e; € ¥ is a long root (the case of tube type), then

1
(nedo])
My(\, 0 84) = 272
rla -t
aTH ™5

Then the Whittaker function Wy(\, n; g) satisfies the functional equation

WX, 5 g) = My(N, 5 w) We(wX, 15 g), weW.

Let A(Q2) denote the radial part of the Casimir operator Q2 with respect to the
Iwasawa decomposition G = NAK for representations 1 and x, from the left and
right respectively. Then e ” o (A(2) + (p, p)) o €’ is given by

Qy — Z(a, a) e®™ — 4{ey,e1) Le*'  (tube type),

acV¥

Q, — Z(a, a) e**  (non-tube type),

aev
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where (), is the Casimir operator on a. The operator is the same as the class one
case for non-tube type, and there is an additional term for tube type:

_ O =S
e po(A(Q)+<p,p>)oe":Zﬁ—526““ e gl (2)
¢ i=1

=1

Radial parts of invariant differential operators give a family of commuting
differential operators, which prove complete integrability of Toda model with the
above Schrodinger operator.

Let ®,(a) denote the series solution of

(€70 (A(Q) + (p,p)) 0 ") 0x = (X, A) )

of the form
Or(a) = a* ) b (Na", by(A) =1,

HEA

where A denotes the family of linear combinations Y n,a with @ € ¥ and n,, € Z*.
Then e’®) is an eigenfunction of A(D) for all D € D;(G/K), and functions @y,
w € W, form a basis of the space of the joint eigenfunctions for generic \.

Now we state the main result of this article.

Theorem 1 For generic A we have

W\, m;a) = > Mo(A, 05 wow) co(wow)) @(wA, ;5 a).

weW

If £ =0, the above theorem is a special case of the result of Hashizume [2].

As in the case of the Whittaker functions on semisimple Lie groups of rank
one, Whittaker functions depend “essentially” on reduced root system consisting of
inmultiplicative roots in ¥ and A (and ¢ for tube type). We define the Whittaker
function associated with C,.-type root system. For G = Sp(r,R), the system ¥ is of
type C, and m, =1 for all & € . Define a function W), ¢(a) on A by

Wiela) = de(N) " a " Wy(X\,m; a)
where

d(\) = xe@o)ee(n) [ 27MT(a)'x
aext, middle

< [ 2~rT (Aa + % + g) T'(2\,) " (3)

a€X T, long

with ¢(A) the c-function for Sp(n,R)/U(r). Then W, (a) is W-invariant with
respect to A and
lim Cl_wOA W&g(a) = dg()\)_lcg()\>.

a—r0o0
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Corollary 1 Let G/K be an irreducible Hermitian symmetric space of tube type.
Then we have
WZ<>‘7 n; CL) = dZ(A)QPW(/\, ga CL),
where dy(N\) is given by (3) with co(N) the c-function for G/ K.
We can regard W, (a) as a multivariable analogue of the classical Whittaker
function W, ,(z), which is associated to the root system of type C,. In a similar
way, we can define a multivariable analogues of the modified Bessel function of the

second kind associated with reduced root systems from class one Whittaker functions
on real split simple Lie groups.

§ 2. Siegel-Whittaker functions

Let G/K be an irreducible Hermitian symmetric space of tube type, Py = Ly x N;
Siegel parabolic subgroup of G, R = (L; N K) x N,s. Then we have the generalized
Cartan decomposition G = RAK. Let n be a normalized unitary character of N,
that is fixed by L; N K. We consider functions on G that satisfy

u(rak) = trivy ~x -n(r) tula) x—¢(k), r€R,a€c A keK.
Then the radial part A(Q) of the Casimir operator 2 for such u satisfies

572 0 (A(Q) + (p. p)) 0 57/

! 8 e;—e; 6]'—67
- Zl ot? Z m2js,1nh2 t; nzt 42 " +€62t (4)

1<i<y<

where

§= H (sinh @)™ ﬁ e ti/2,

aeXt middle i=1

Radial parts of invariant differential operators give a commuting family of differential
operators containing the above Schrodinger operator, which prove integrability of
the model.

There exists a unique joint eigenfunction globally defined on A and of moderate
growth up to constant multiples ([11]). This function was studied by Ishii [3] for
G = S0¢(2,n).

Remark 1 (i) It is known that the Schrédinger operators (2) and (4) give
quantum integrable models (cf. [5]). Radial parts of invariant differential operators
give a family of commuting differential operator, which prove complete integrability
of the models with the Schrédinger operators (2) and (4). These group theoretic
interpretations seem to be new.
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(ii) We can prove in a similar way as [10] that the C-type Whittaker function
Wie(a) is a degenerate limit of the BC-type Heckman-Opdam hypergeometric
function. The Siegel-Whittaker functions of moderate growth is also a degenerate
limits of the Heckman-Opdam hypergeometric functions (cf. [6]).
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