Bectuuxk TT'Y, 1.3, Boin. 1, 1998

Unrefinable, simple graded Lie-algebras

A. Alexeevski *
Belozerski Institute of Physical-Chemical Biology
Moscow State University

Abstract

We deal with the problem of the classification of simple graded Lie algebras. By a graded Lie algebra
we mean a Lie algebra equipped with its grading by an arbitrary Abelian grading group H. In 1969 V.Kac
classified finite-dimensional semisimple Lie algebras graded by a cyclic group. We study the opposite case:
Lie algebras graded by a maximal possible grading group H, or equivalently, graded Lie algebras which
grading subspaces are as small, as possible. We call such algebra the unrefinable graded Lie algebra. The
result of this work is the classification of finite-dimensional, unrefinable, simple graded Lie algebras over
the field of complex numbers (it is not yet completed for Lie algebras E7 and Eg). This result is equivalent
to the classification of maximal, commutative, diagonalizable subgroups of groups of automorphisms of
semisimple Lie algebras.

1 Introduction

In this work we have classified the important class of finite-dimensional, simple graded Lie algebras over
the field of complex numbers. This class consists of unrefinable graded Lie algebras (see definition 3).

Let us first clarify the terminology. ”A graded algebra” is an algebra with a fixed grading of it (see
definition 1). Graded Lie algebras form the category, in which a morphism is defined as a morphism of
Lie algebras compatible with gradings. A simple object in this category is called a simple graded Lie
algebra. A grading of a simple Lie algebra is the simple graded Lie algebra; converse statement is not
true.

A grading of the algebra is called the refinement of another grading iff any grading subspace of the
first grading is contained in a certain grading subspace of the second grading. A grading of an algebra
is called unrefinable iff there is no refinements of it. An algebra with an unrefinable grading is called an
unrefinable graded algebra (see definition 3).

Gradings of Lie algebras are widely used in the Lie group theory and in other theories where Lie
algebras are needed. There is a simple explanation of this fact: for an algebra in a basis compatible with
a grading, the structure constants are much ”simpler” than in a basis in general position. For instance,
in the first case, a lot of the structure constants are équal to zero. Thus, the classification of graded Lie
algebras is important for finding different kinds of ”simple” bases of an algebra.

Surprisingly, this quite natural and important classification problem was not solved even for semisimple
Lie algebras over the field of complex numbers, although many of such algebras are well-known, even
became classical objects.

Let us show why it is natural to restrict the classification to the unrefinable gradings.

First, a grading with ”smallest” grading subspaces allows to choose a ”simplest” basis. We illustrate
this ”simplicity” by a grading with only one-dimensional grading subspaces. Let {£;} be a basis in general
position of an algebra g . Then [E;, E;] = C(3,, k) Ex and the structure constants C(i, j, k) depend on
three variables: i,j, k. Assume, there exists a grading of g with one-dimensional grading subspaces;
denote by H the grading group. Consider a basis {E,| a € H} which is compatible with the grading.
Then [Eq, E3] = f(a,b)Eqats (a,b € H). Therefore, C(a,b,c) =0if a+ b # ¢ and C(a,b,a+b) = f(a,bd).
Thus, the structure constants essentially depend only on two variables. Therefore, this case (of one-
dimensional grading subspaces) leads to the very simple basis of an algebra.

In general, grading subspaces of an unrefinable grading can be of higher dimension. Nevertheless, the
example shows why the smallest grading subspaces leads to the simplest basis. Moreover, an arbitrary
grading of an algebra can be refined to an unrefinable grading. Therefore, a basis compatible with the
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unrefinable grading is compatible also with the first one. Thus, if we are interesting in ”simple” bases of
an algebra, we can restrict the classification problem to the case of unrefinable gradings.

Second, the classification of unrefinable gradings is an essential step in the classification of all gradings
of Lie algebras. Indeed, any grading of an algebra can be obtained from an unrefinable grading by the
procedure, inverse to the refinement. The essence of this inverse procedure is gluing together several
grading subspaces to obtain grading subspaces of a new grading. This procedure can be defined purely
in the terms of the invariants of the unrefinable grading, which are combinatorial objects. Thus, the
complete classification of gradings can be derived from the classification of unrefinable gradings.

The famous example of an unrefinable grading is the Cartan root decomposition of a semisimple Lie
algebra. It is not a unique example: there exist other unrefinable gradings of semisimple Lie algebras.
The list of them includes among others:

- the gradings which lie in the base of Clifford algebras and generalized Clifford algebras introduced
by Morinaga and Nono [10];

- the gradings of Popovichi (see [11]);

- the gradings by Jordan subgroups [2], [3] (not all of them are unrefinable gradings but the majority
are);

- the gradings of Hesselink [7];

- two gradings of Es by the grading groups Hy; = Z 3 and Hy = 7Z 5. We do not know a reference
for the explicit description of these two interesting gradings. Their existence is the trivial corollary of
the work of Adams [1] in which maximal commutative subgroups Z § and Z  of the Lie group Es were
found. These two gradings were also discovered independently by the author (but were not published):
they are the refinements of the nice grading of Es by the Jordan subgroup H = Z 3 (see [2], [3]). The
last grading was rediscovered independently by Tompson and was used in the construction of the special
integer lattice in Eg [13], [12]).

It is not easy to list all known unrefinable grading: sometimes they appeared in publications implicitly,
as a technical tool. For example, in the paper of Bernstein, Gelfand, Gelfand [4] special gradings (which
can be called ”the Cartan gradings mod 2”) were used in the construction of models of representations
of compact Lie groups. However, in this paper these gradings were not even defined as an independent
object.

One can also find the use of unrefinable gradings in the construction of some quantum groups, in
which the basis compatible with the structure of the generalized Clifford algebra is used.

Unrefinable gradings of simple Lie algebras were also essentially used in the papers of Kostrikin and
his co-authors, in which the orthogonal Cartan decompositions were studied (see [9]).

Let us shortly describe the result of the work, i.e. the classification of finite-dimensional, unrefinable,
simple graded Lie algebras over the field of complex number.

There are four series of unrefinable gradings of simple Lie algebras. Cartan root decompositions are
particular cases of these series with special values of parameters. Graded Lie algebras from these series
we call classical graded Lie algebras (all of them are gradings of the classical Lie algebras). These four
series are more or less known objects. Our result is the computing their invariants and the presenting
them in the frame of general theory (section 5).

The main invariants of an unrefinable graded Lie algebra are:

- the generalized root system (shortly, root system);

- the group of diagonal automorphisms of the graded Lie algebra, which is a diagonalizable subgroup
of the group of all automorphisms of the Lie algebra;

- the generalized Weyl group.

In section 2 exact definitions of these invariants are given and their properties are stated.

One of the series is constructed from graded associative algebras. In the section 3 the classification
of finite-dimensional, unrefinable, simple graded associative algebras is given.

In addition to the four series, there are several exceptional unrefinable gradings of simple Lie algebras.
All of them are gradings of the simple Lie algebras D4, Ga, Fy4, Eg, E7, Eg. There are: 2 unrefinable
gradings of g = G; 3 special unrefinable gradings of g = D4 (plus gradings, which are included into the
series); 4 unrefinable gradings of g = Fy; 12 unrefinable gradings of g = Fs; 127 unrefinable gradings of
g = E7; < 20 unrefinable gradings of g = Fg.

In the section 6 are listed all exceptional unrefinable gradings of Lie algebras Dy, G, Fy, Es. We plan
to present the complete list of exceptional unrefinable gradings of E7 and Es together with the missing
proofs in a separate publication.
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We prove that the gradings listed above are all unrefinable gradings of the simple Lie algebras. In
addition, there exist unrefinable, simple graded Lie algebras, which are not gradings of simple Lie algebras.
All of them are gradings of semisimple Lie algebras. Moreover, all of them can be constructed from the
gradings of simple Lie algebras by the use of the construction, which we call ”an induced graded algebra”.
This construction is the direct generalization of the construction used by V.Kac for the classification of
cyclic gradings [8]. We prove that all finite-dimensional, unrefinable, simple graded Lie algebras are
induced from those unrefinable graded Lie algebras, which are gradings of simple Lie algebras (section
4).

The present paper is an attempt to describe in details the common technique for dealing with unrefin-
able gradings of Lie algebras. On the other hand, we omit some of the proofs which are rather standard
or well-known. We want to point out that the technique, developed in this work, can be used for studying
infinite-dimensional graded Lie algebras.

2 Definitions and denotations

Definition 1 Let I’ = (g ,Q) be a pair, which consists of a Lie algebra g and a set Q ={V |V C g}
of linear subspaces V of g . Then T is called the graded Lie algebra iff:
(]‘) P Z:;/eﬂ Vsl
(2) if Vi, Vo € Q then [Vi, Vo] = 0 or [V4, Vo] C Va for a certain Vs € Q;
(3) there ezists an embedding p of Q into an Abelian group H, such that if [Vi,Va] # 0 and [Vy, Vo] C Vs
then p(V1) + p(V2) = p(V3).

A subspace V € Q is called a oot subspace, or a grading subspace.

A morphism ¢ : Ty — Ty of graded Lie algebras T'y,T5 is defined as a morphism of Lie algebras
¢ :8, — 8 such that the image of any root subspace of T'y is contained in a root subspace of T'y.

Let a graded Lie algebra I' = (g ,2) be given. Then we call g the underlying Lie algebra. Conversely,
a structure of a graded Lie algebra on a given Lie algebra g is called a grading of g .

In Section 3 we deal also with graded associative algebras. The definition is just analogous to the
definition 1. Particularly, we require that the group H is an Abelian group. Graded associative algebras
with non-Abelian H also can be defined, but they are not needed in this work.

Definition 2 Let graded Lie algebra T = (g ,Q) be given. Define an Abelian group Hg. Its generators
are elements V € Q and defining relations are: Vi + Vo = V3 for any triple Vi, Vs, Va € Q such that
Vi, Vo] C Vs and [V, Vo] # 0. We call Hy, the grading group of T. The image of the tautological map
p:Q — Hy, we call generalized root system of T, or shortly root system. Its elements we call roots.

It is easy to check that the tautological map of Q into H,, is an embedding. Therefore, an Abelian
group H in the definition 1 can be chosen canonically: H = H,,.

A grading subspace is in the same time a generator of the grading group. In order to distinguish these
two roles we use denotations: V' € Q denotes a root subspace in a Lie algebra g ; p(V) € p(Q) denotes a
root, i.e. an element of grading group Hy,. Conversely, for a root a € p(f2) a relevant root subspace is
denoted by V.

Let us define the main invariants of a graded Lie algebra I' = (g , ).

First invariant is the generalized root system p(2) C Hyr. In the case of Cartan root decomposition
the generalizéd root system p(£2) coincides with the classical root system enlarged by zero.

Denote by G the group Autg of all automorphisms of underlying the Lie algebra g ; G is a linear
algebraic group. The automorphism group AutI' = {g € G | g(V) € Q VV € Q} of the graded Lie algebra
I is a closed subgroup of G. The group A(T') = {g € Autl' | g|ly = AvE,Av € C *,YV € Q} (E denotes
the unit matrix) we call the group of diagonal automorphisms of T'. Clearly, A(T') is a diagonalizable !
subgroup of G.

Second invariant of I' is the pair (G, A(T')). In the case of Cartan root decomposition A(T') is the
maximal torus of G.

The group AutI' acts naturally by automorphisms of the grading group Hy,. Third invariant is the

image of AutI’ in Aut H,.. We denote this image by w. Thus, W is a subgroup of the automorphism

1 A subgroup A of G is called diagonalizable if in a representation of G its image is a subgroup of the group of all diagonal
matrices.
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group of an Abelian group. In the case of Cartan root decomposition group W coincides with the
extension of Weyl group with the group of automorphisms of Dynkin diagram.

Lemma 1 The group A(T') is isomorphic to the group of characters Hﬁ of the grading group H,,.
Proof is standard. [J

Definition 3 A morphism ¢ : I'y — 'y of graded Lie algebras is called an refinement iff it is an isomor-
phism of underlying Lie algebras.

I’y is called a refinement of I'y iff there exists a refinement ¢ : 'y — T's.

' is called unrefinable graded Lie algebra iff there is no non-trivial (i.e. which are not isomorphisms
of graded Lie algebras) refinements of T

The definition can be reformulated as follows: morphism ¢ : 'y — I'y is an refinement iff for every
V € Qg there exist Wy,..., Wy € Q; such that V = ¢(W,) + ¢(Wa) + ...+ ¢(Wi). Thus, a graded Lie
algebra I' = (g ,2) is an unrefinable one iff there is no gradings of underlying Lie algebra g , such that
any root subspace of it is contained in a certain root subspace of I'.

Gradings of Lie algebra g are in one-to-one correspondence with a special class of diagonalizable
subgroups of the group G = Autg . For shortness, we formulate this standard fact only for unrefinable
gradings.

Proposition 1 .

(1) T = (g ,Q) is an unrefinable graded Lie algebra iff A(T') is a mazimal diagonalizable subgroup of the
group G = Autg ;

(2) every mazimal diagonalizable subgroup A of G coincides with the group A(T) for an unrefinable grading
[ ofg;

(3) Ty = (g 1,1) 1s isomorphic to I'y = (g 3,$2) iff there exists an isomorphism ¢ : G1 — G2 such that
#(A(T'1)) = A(T2)

Thus, the problem of classification of unrefinable graded Lie algebras is equivalent to the problem of
classification of maximal diagonalizable subgroups of the groups of automorphisms of Lie algebras.

The invariants defined above for a graded Lie algebra can be defined also for a graded associative
algebra. The analog of proposition 1 also is true. We omit the precise formulations because they are
evident.

3 Unrefinable simple graded associative algebras

Two series of unrefinable associative algebras are well-known. They are the generalized Clifford algebras
and the Cartan grading of the matrix algebras.

3.1 Generalized Clifford algebras

Let H be an Abelian group and £(a, b) be a 2-cocycle on H with values in C *. Denote by C [H] the group
algebra of H. We define the new multiplication on C [H] by formula: z *y = {(z,y)zy for any z,y € H.
Denote this new algebra by C [H]¢ and denote by H the set of all one-dimensional subspaces generated
by elements of the group H.

Proposition 2 The pair Eg¢ = (C [Hl¢, H) is a graded associative algebra. It is unrefinable, simple
graded algebra. g ¢ is isomorphic to Sg ¢ iff there ezists an 1somorphism ¢ : H — H' such that cocycle
$*E' is cohomological to €.

Proof. The condition of the associativity of a multiplication ”%” is just equivalent to the condition
that £ is 2-cocycle. £ ¢ is unrefinable graded algebra because all its root subspaces are one-dimensional.
It is easy to check the simplicity of Xy ¢ and to verify the second statement. [

Thus, the graded algebra Xp ¢ is uniquely defined by the orbit of cohomology class [¢] € H?(H,C *)
under the action of the group Aut H. The graded algebra Xy ¢ is called the generalized Clifford alge-
bra [10]. Evidently, it is finite-dimensional iff a group H is finite.
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3.2 The Cartan grading of a matrix algebra

Denote by FE;; an elementary matrix of the order n x n. Denote by V; ; the one-dimensional subspace
generated by E;;, i # j , by Vo the subspace of all diagonal matrices and by Q the set {Vp,V;; | i,j =

Il s (e = T

Proposition 3 The pair MS, = (Mn, §2), which consists of the matriz algebra M and the set of subspaces
Q is a graded associative algebra. It is unrefinable simple graded algebra.

Proof is evident. [0

3.3 Classification theorem
The tensor product of two graded associative algebras is defined as follows:
L1 =(51®5:,0 ®0) where Q@ ={Vi@V: | V1 €,V € 2}

Evidently, £; ® 5 is a graded associative algebra.

Let us compute the tensor products of the graded algebras, defined above.

For cocycles & € Z%(Hy,C*) and & € Z?(H,,C") denote by & - §2 the 2-cocycle on the group
Hy @ Ha; it is defined by the formula: (&1 - &2)(z1 @ y1, T2 ® y2) = &1(z1, 22) - E2(y1, Y2)-

Lemma 2 .

(1) ZHy 6 ® Tty 60 = TH1@Ha 61625

(2) the graded algebra Mj, ® M§, is refinable graded algebra if n,m > 1;
(3) the algebra L ¢ @ M;, is an unrefinable, simple graded algebra.

Proof is trivial. O

Theorem 1 Let ¥ be a finile-dimensional, unrefinable, simple graded associative algebra. Then X is
isomorphic to an algebra Ty e @ M. (Partial cases: H = {0} and £ = M;; n =1 and ¥ = Xy ¢ are
included.)

The sketch of the proof is given in the further subsections.

3.4 The induced graded algebra

Let us describe the construction of a new graded algebra starting from a given graded algebra. It is valid
both for associative and Lie algebras. Thus, the term ”an algebra” below means either an associative or
a Lie algebra.

The initial data for the construction are: 1) a graded algebra o = (5,€); 2) an Abelian group H
and its epimorphism 7 : H — Hy onto the grading group Hp of Xy. The tensor product C [H] ® Sp
has a structure of the graded algebra: its grading subspaces are (z) ® Vj,, where z € H, (z) is a one-
dimensional linear subspace generated by z in the group algebra C [H], and V, is a grading subspace
of Sy corresponding to a root y € €p. Denote by Q the following set of grading subspaces: Q =
{(z) ® Va(z) | 7(z) € Qo}; denote by S the direct sum of all linear subspaces from Q. Evidently, S is the
graded subalgebra of C [H]® S. We call it the induced graded algebra and denote by C [H] ®» 0.

Lemma 3 Let ¥ = C [H] @« ¢ be the induced graded algebra. Then
(1) £ 1s finite-dimensional iff g is finite-dimensional and ker 7 is finile;
(1) = is unrefinable, simple graded algebra iff Xo is unrefinable, simple graded algebra.

Proof of the lemma is the trivial exercise in algebra. [

There exists the equivalent definition of the induced graded algebra, which substantiates the use of the
word ”induced”. Let ¥ = (Sp,0) be a graded algebra, Ay be the group of all diagonal automorphisms
of £y and ¢ : Ag — A be a monomorphism into a commutative group A. Denote by S the following
algebra of functions: S = {F : A — Sp | F(zao) = ao(F(z)) for ap € Ao}. Evidently, the group A acts
as a diagonalizable subgroup of automorphisms of S. Therefore, S has a structure of a graded algebra,
which we denote by X.

Lemma 4 The graded algebra ¥ is isomorphic to the induced algebra: £ = C [H] ®r Eo, where H = A#
and T = ¥,

Proof is obtained as the reformulation of the definition of the induced algebra in the dual terms. O

9
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3.5 Diagonalizable subgroups of PGL(N)

All maximal diagonalizable subgroups of the group G = PGL(N) are well-known. In this subsection we
describe them without proofs.
Let us fix a primitive root ¢ of unit of order m. Denote by X and ¥ m x m matrices

0 0 0 1 L0 00
1 @ 0 0 OESSE () 0
D= | [ SO ) 0 ¥Y=| 0 0 & 0

Evidently, the matrices X,Y are nondegenerate. Denote by ﬁ(m} the group, generated by X,Y. It
is a subgroup of GL(m). Denote by A(m) the image of A under the projection GL(m) — PGL(m).

Lemma 5 A(m) =Z m X Z m. The subgroup A(m) is a mazimal diagonalizable subgroup of PGL(m).

Subgroups A(m) and tori are the bricks for constructing all diagonalizable subgroups of PGL(N). Let
us factorize the number N as follows: N = m;...m,n, where m; = p{"* is a power of a prime. Denote
by K the subgroup of PGL(N), which is the image of the linear group GL(m,) x ... x GL(m,) x GL(n).
Evidently, K = PGL(m;) X ... x PGL(m;) x PGL(n). The subgroup A(m;) of i-th factor PGL(m;) we
will consider also as a subgroup of PGL(N).

Proposition 4 .

(1) An arbitrary diagonalizable subgroup of PGL(N) is isomorphic to a subgroup A = A(m;) x ... X
A(my) x A" for an appropriate factorization N = my ...mgn and a subgroup A' of a mazimal torus of
PGL(n);

(2) A is mazimal diagonalizable subgroup of PGL(N) iff A’ coincides with a mazimal torus of PGL(n).

Let us accept the standard denotation: A(my,...,m,;) = A(my) x ... x A(m;) is the subgroup of
PGL(m;) x ... x PGL(m;) and also a subgroup of PGL(N) for N = m; ...mn.

Note, that the subgroups A(m,, ..., m,) was know already to C.Jordan. They played the essential
role in his classical work [6].

3.6 Proof of the theorem 1

Let £ = (S,Q) be a finite-dimensional, unrefinable, simple graded associative algebra.

Assume first, that S is the simple algebra. By Wedderburn’s theorem, S is isomorphic to a matrix
algebra My over the field of complex numbers. By the analog of the proposition 1 for associative algebras,
it is sufficient to classify maximal diagonalizable subgroups of the group Aut My = PGL(N). It is done
in the proposition 4. Therefore, all we need is to reformulate the properties of known diagonalizable
subgroups in terms of gradings, defined by them. Thus, we get that in this case ¥ = Xy ¢ ® Mj,. Certain
details about unrefinable gradings of Mx are given in the further subsection.

Let us turn to the case of an unrefinable, simple graded algebra ¥ = (.S, ) with not simple underlying
algebra S.

Lemma 6 The underlying algebra S of an unrefinable, simple graded associative algebra ¥ = (S,Q) is
the direct sum of algebras, each one isomorphic to the same simple algebra Sp.

Proof is standard. O

Thus, by the lemma 6, S = Sp & ...® So, where Sy is a simple algebra. Let A be the group of all
diagonal automorphisms of ¥ and Ay = {a € A | a(So) = So}. Then, clearly, Ag is the diagonalizable
subgroup of the group of all automorphisms of the algebra Sp. Therefore, Ay defines the grading of
the algebra Sy. Denote this graded algebra by o = (So,€0). Using the lemma 4, it it easy to show,
that the graded algebra ¥ is induced from the graded algebra Xy. By proposition 3, ¥y is unrefinable,
simple graded algebra; its underlying algebra Sy is simple associative algebra. Such algebras are already
classified. Thus, Xp = g, ¢ ® M¢ for an appropriate 2-cocycle £ on an Abelian group H; and n.

10
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Lemma 7 Suppose, X9 = Ep, ¢ @My, and the underlying algebra of Xo is M. Denote by Hy the grading
group of By. Assume, ¥ is an induced graded algebra: £ = C [H] ®x Lo. Then

(1) Ho=H,@Z";

(2) the grading group H,(X) coincides with H;

(3) there ezists a decomposition H = Hy @ Hy such that Hy = Z ™" and the kernel of the homomorphism
w lies in H, 3

4) E= X5 0@ M, where the cocycle 0 is defined by formula: 0(z,y) = &(7(z), 7(y))-

We omit the proof, which is elementary. O
Thus, the proof of the theorem follows from this lemma. [J

3.7 Unrefinable gradings of a matrix algebra

In this section we select those unrefinable, simple graded algebras, which has a simple (therefore, matrix)
underlying algebra, and study them in more details.

The cohomology group H?(H,C *) is well-known. We describe it shortly without proofs. For a
cocycle ¢ € Z(H,C*) let us define a function (z,y)e = &(z,y)é(y,z)™" (z,y € H). The function
(z,y)e : Hx H— C " is the analog of a skew-symmetric bilinear form on H. We call it "the biexponential
form’ because the operation in C * is the multiplication and operation in H is the addition.

Definition 4 A map (z,y) : H x H — C " is called biezponential form iff (z + y, 2) = (z,z) - (y,z) and
1

(z,y+z) = (z,y) - (z,z). A biezponential form is called skew-symmetric iff (z,y) = (y,z)~".
Lemma 8 Let k = C. Then (1) the map £ — (z,y)¢ correctly defines the isomorphism of the group
H2(H,C™) to the group of all biezponential forms on H with respect to natural multiplication of forms
(z,y) - (z,y)"; (2) cohomology classes [€'] and [€"] belong to the same orbit of the group Aut H iff the

corresponding forms (z,y)e and (z,y)en are equivalent as forms 2.

Definition 5 A 2-cocycle € is called non-degenerate iff the form (z,y)¢ is non-degenerate.

Proposition 5 The underlying algebra S of a graded associative algebra Xy ¢ = (S, H) is simple algebra
(therefore matriz algebra) iff the cocycle € is nondegenerate.

A biexponential skew-symmetric form can be represented in a canonical form which is an analog of
the canonical form of a bilinear skew-symmetric form.

Proposition 6 Let (z,y) be a nondegenerate biexponential form on a finite Abelian group H. For every
m fiz a primitive root e, € /1. Then there ezists a minimal set of generators ay, by, as,bs, ..., a,,b, of
H which salisfies conditions:

(1) the elements a; and b; are of the same order m; fori=1,...,s;

(2) {ai, b)) =€m;, 1=1,...,8; {ai, b)) =0, i # j; (@i, a;) = (b, b;) = 0 for any 4, j;

(3) numbers m; are powers of primes: m; = p{"*;

(4) two biexponential forms are equivalent iff they have the same sets of numbers {my, ..., m,}.

Denote by M(g D) the graded associative algebra, which corresponds to the biexponential form
with given set of numbers {m;,...,m,}. If s = 1 then the underlying algebra of Mfm) is isomorphic to
the matrix algebra M, of order m = p®. Let us find grading subspaces in matrix term.

For any element X of the linear group A(m) C GL(m), which is defined in subsection 3.5, denote
by (X) the one-dimensional linear subspace, generated by the matrix X. Evidently, we get m? different

linear subspaces. Let us denote the set of all these linear subspaces by H,.

Lemma 9 The set of subspaces Hp, defines the structure of a graded algebra. The graded algebra
(Mm, Hm) is isomorphic to the graded algebra MY,.

Corollary 1 (1) Mfmh_“'m‘) =M, ®...@MY,,; (2) an arbitrary finite-dimensional, unrefinable, simple
graded associative algebra £ = (S,Q), such that S = Mn, is isomorphic to a graded algebra Mj, ®...®
M{, ®M;, for an appropriate factorization N = my ...msn and m; be powers of primes: m; = p;**.

2We use the terminology of the linear algebra in the case of finitely-generated Abelian groups; the meanings of terms
are clear from the context.

11
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4 Unrefinable, simple graded Lie algebras with not simple un-
derlying Lie algebra

The construction of the induced graded Lie algebra allows to reduce the classification of unrefinable,
simple graded Lie algebras to the case of graded algebras with simple underlying Lie algebra.

Theorem 2 Let I' = (g ,Q) be a finile-dimensional, unrefinable, simple graded Lie algebra. Assume that
g is not a simple Lie algebra. Then there exists an unrefinable, simple graded Lie algebra Ty = (g o, )
with simple underlying Lie algebra g , such that T' = C [H] ®x T'o.

Proof is exactly the same as the proof of the analogous fact for graded associative algebras, which is
given in the subsection 3.6. O

5 The classical unrefinable, simple graded Lie algebras

;From this section, we suppose that the underlying Lie algebra of a graded Lie algebra is a simple algebra.

5.1 1-st series: graded Lie algebras, associated to graded associative algebras

Let £ = (S,Q) be a graded associative algebra. Denote by Lie(S) the Lie algebra on the linear space S
with the commutator [X,Y] = XY — Y X. Evidently, the set Q of linear subspaces defines the structure
of graded Lie algebra ® on Lie(S). We denote this graded Lie algebra by Lie(X) and call it the graded
Lie algebra associated with X.

The center C of an underlying Lie algebra g of a graded Lie algebra I' = (g , ) is a graded ideal of
I'. Therefore, the factor algebra I'/C inherits the structure of a graded Lie algebra.

Proposition 7 Let & = (S,2) be an unrefinable graded associative algebra with simple underlying alge-
bra, i.e. S is isomorphic o a matriz algebra My. Then the algebra I' = Lie(X)/C (C is the center of
Lie(X)) is an unrefinable, simple graded Lie algebra.

We omit the elementary proof of this proposition. [J

By the theorm 1 and the corollary 1, an arbitrary finite-dimensional, unrefinable graded algebra,
which underlying algebra is a matrix algebra, is isomorphic to X = Mfm;,...,m.) ® M%. Denote the graded
Lie algebra Lie(X)/C by Alm.,...,m.);n—l' We accept certain restrictions on the parameters of this series:
s=0andn>1l;ors=1and (n=0o0rn>2);0ors>1andn>2.

By proposition 7, ¥ is finite-dimensional, unrefinable, simple graded Lie algebra. In this subsection
we compute main invariants of graded Lie algebras from this first series.

Assume first, that ¥ = Mfmh___'m'). By the results of the subsection 3.7, ¥ is a generalized Clifford
algebra with nondegenerate 2-cocycle §: ¥ = Xp¢.

Denote by I‘(gmh___'m’) the graded Lie algebra Lie(Mgmhm.m’)). By definition, the set of elements
{z | = € H} form a basis of the generalized Clifford algebra. In order to distinguish elements of basis
of Lie algebra and elements of the Abelian group H we denote the elements of this basis by E,,z € H.
Evidently, the set £ of grading subspaces of the factor-algebra I' = P(gml.---.rn.) /C can be identified with
H \ {0} (zero is deleted because of factorization by center).

Lemma 10 The structure constants of the graded Lie algebra T' = Ffm; Lma) /C in the basis {E, | z €

H\{0}} are given by the formula [E;, E,] = f(x,y)Ez4y Y2,y € H\{0}, where f(z,y) = {(z,y)—E&(y, ).
Particularly, [E., E,] =0 iff (z,y)¢ = 1.

Proof is evident. [0

Denote by p the tautological embedding of Q2 = H \ {0} into the grading group H,, of I' and put
p(0) = 0, by definition. If [E;, E,] # 0 then p(z + y) = p(z) + p(y). Therefore, p is the ’partial
homomorphism’ of the group H to H,,. Although p is a bijection of sets and the partial homomorphism,
nevertheless, in certain cases it is not a group isomorphism.

We distinguish two cases: 1) at least one number among m; is greater than 2, or s=1 and m; = 2;
2) s> 1and m; =...=m, = 2. In the last case, we denote s-component vector (2,...,2) by 2(s) for
shortness.

#The commutativity of a grading group Hg, of a graded associative algebra is essential just at this point
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Proposition 8 Assume, thal there is at least one m; > 2 ors = 1,my = 2. Lel N =my...m;. Then
the invariants of I' are as follows:

(1) p: H — Hy, is an isomorphism of the groups;

(2) (@) = Hy, \ {0);

(3) the group W consists of all automorphisms of H, which preserve biezponential form (z,y)e or transfer
it to the inverse form: W = {g € Aut H | (9(2),9(v))e = (a;,y)fil};

(4) the underlying Lie algebra is g = sl (N), its automorphism group G = Z 5 - PGL(N);

(5) the subgroup A(T') coincides with the group A(my,...,m,) C PGL(N), defined in the subsection 3.5.

We omit the simple proof of the proposition. [0

In the case 2) we identify the Abelian group H with the additive group of a vector space [ 2* over the
two-element field F 5. It can be easily checked, that (z,y)¢ = (—=1)¥), where (z,y) is a nondegenerate
bilinear form over the field F 5. It is known, that (z,y) = q(z + y) + ¢(z) + ¢(y) for a certain function
q(z) € F 5, which is called quadratic form. Thus, (z,y)e = (—1)1=+9)+a(@)+e(y)

The invariants of ' in this case are described in the proposition below.

Proposition 9 Lets > 1 and my = ... =m; =2. Then

(1) Hy =F3® H, H=TF ,®F2* and p is given by formula: p(z) = (q(z) + 1)w + z, where w is the
generator of the direct summand IF 5;

(2) p() ={(g(z) + Dw+z |z € Hz#0};

(3) the group W is isomorphic (as an abstract group) to the symplectic group Sp(H) of the form (z,y)¢;
(4) the action of W = Sp(H) by automorphisms of Hy, is given by the formula: m(g)(w) = w, 7(g)(z) =
((9(z)) + q(2))w + g(z) (g € W);

(5) the underlying Lie algebra is g = sl (N), N = 2%;

(6) the subgroup A(T) is the direct product of the subgroup A(2,...,2) of PGL(N) and a two-element
subgroup, generated by an external automorphism of the Lie algebra g = sl (N);

Proof is reduced to the direct algebraic verification; we miss it here. O

Thus, in the case of the generalized Clifford algebra the invariants are described.

Assume now, that ¥ is the Cartan grading of a matrix algebra: ¥ = M§. It is clear, that in this case
the graded Lie algebra I' = Lie(M¢)/C is just Cartan root decomposition of sl ,. Thus, we obtain the
proposition:

Proposition 10 Let I' = Lie(M§)/C. Then

@) Hgp=2"";

(2) p(2) ={es —ej | i # 4,1, =1,...,n} U {0}, where elements e; generates Hy and ey + ...+ em =0
(in other words, p(Q) is the classical root system An_y enlarged by zero);

(3) the group W is generated by the Weyl group W = S, of type A,—1 and the automorphism T, which
acts on Hgr as —1;

(4) A(T) is mazimal torus T"~"' of the group PGL(n).
1
(my,...,my)in—1"
Clifford algebra) and s = 0 (a Cartan root decomposition Aé; . = Ap) are described above.

Let us turn to the general case I' = A The invariants for the cases n = 0 (a generalized

Proposition 11 Let s > 0, n > 0 and T be of the type A%ml“ Then

8

(1) Hyy = H' ® H", where H' = ®(Z mi® Z m;), H"' = Hor(Ap) = Z";

i=1
(2) p(Q)={z+a |z€ H' a€Q" CH"} where Q" = Q(A,) is the root system of Ay, ;

(3) the group W is generated by the subgroup W of indez 2 and an element T; W = W/ @ W" where W' is
the group of all authomorphisms of H' preserving the biezponential form (z,y)e, W"” = W(A,) = Sppa
is the Weyl group of type A,; T preserves H' and H", 7(z) = —z if z € H", 7|g transfers the form
(z,y) into inverse one: (7(z),7(¥))e = (z,v)¢ s

(4) the underlying Lie algebrag =sl (N), N =m;...m,(n+1);

(5) the subgroup A(T) coinsides with A(my,...,m,) x A", where A" is mazimal torus T™ of the factor
PGL(n + 1) of the subgroup K = PGL(m,) x ... x PGL(m,) x PGL(n+1) C G.

yMg)in®

The proof can be derived from the definition of the subgroup A(m;,..., m,) and propositions 8,9,10.
O

13
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5.2 2-nd series: gradings of Lie algebra sl , which are not associated to graded
associative algebras

Algebras from this series are tensor products (in special meaning) of certain graded Lie algebras and
certain noncommutative graded associative algebras. First, we define the factor which is a graded Lie
algebra.

Initial data for the construction of the graded Lie algebra are an n-element set F' and an involution
T : F' — F. Denote by I the set of fixed points of 7. Let us devide the complement F \ I into two
nonintersecting sets J and J', such that 7(J) = J',7(J') = J. Let #I = k and #J = #J' = m. Thus,
n =k + 2m. We use letters s,¢ to denote an arbitrary element of F', i for elements of I , j for elements
of J, j' for elements of J'.

Identify F' with {1,2,...,n} and denote by E;; (s,t € F') an elementary matrix of order n x n. We
will write also F; ; for i € I, j € J and so on, because I, J, J' are subsets of F'.

Define matrix X7,, where s, € F,0 € I 3, by the formula. X1 = Esp— (—1)? Er1),7(s)-

Lemma 11 Matrices X7, satisfy the conditions:
(1) X “._ u‘ft—‘r(s) and o = 0;
() X{(4y,n(sy = (F1)7H X7, for alls,t €F, 0 €F »;
(3) ifs £k, XJ4 #0,X73 # 0 then [X7}, X[1] = AX]4H? where
A—{ 1 ift#r(s),t;ér(k)
2 if t=r1(s)ort=rx(k)
(4) of X7% # 0, X72 £0, then [X7}, X72] = MX7272 — X71197) where
e 1 tf L T(s)
] 2 if = 7(s)
(5) ift #L,t £ 7(k),s# 7(l),s # k, then [X[}, X7}] =0

Proof is trivial. O

Let us define certain linear subspaces of gl ,,. For s,t € F,s #t and o € [ 3 define V7, = (X7,);
Vo =(X?; |jeJ)and V§ = (X}, X}; |i€l,jeJ).

It follows from the lemma 11, that some of these linear subspaces coincide. Namely, V7, = V7 H6)7(s)"
Some of them are zero, namely, V}?,(j) = TG = = {0} for j € J. Denote by Q the set {V? |c € F 5, =0
or ¢ = (s,t) = (7(t), 7(s),s # t} of all this linear subspaces, except zero one (coinciding subspaces define
one element of Q).

Proposition 12 €2 defines the structure of a graded Lie algebra on gl ,,. Denote this graded Lie algebra
by T'¢, and assume in addition that n > 2. Then factor-algebra I' = ],"(,c n) /C by the center is an
unre}magle graded Lie algebra.

Proof. Denote by H an Abelian group with generators w, €; (i € I), ¢; (j € J) and defining relations
as follows: H = (w,€i,ej | 2w = 2¢; =0). Thus, H =F,® F t@Z™.
For any s € F' define an element ¢, € H by formula:
g ifs=iel
(e { €;j ifs=j5€J
—€r(i" B = j’ € !
Define a map p of Q into H by formulas: p(Vy’) = 0, p(Vg') = w, p(V;%) = €5 — €1+ ow. The definition

of p is correct because the identity €,(;) — €;(;) = €; — € holds in H. Evidently, p is an embedding of
into H. To compete the proof we need lemma;

Lemma 12 The following identities holds for the commutants of linear subspaces V € €:
(1)[V0:V00]—[V0: ]—[%:Vo]“{O};

(2) Vo, V, t] C Vi [Vu :Vaz] c Vsat '

(3) if V],Vz e N and i = Va,, V2 = V‘a:, then [Vl,V2] = {0} E—3 p(Vl) +p(V2) ¢ Q [V],Vg] =V &
p(V1) + p(V2) = p(V3).

We skip the trivial proof of this lemma. [J
It follows from the lemma, that for any Vi, Vs € Q either [Vi, Vo] = {0} or [V4, V2] C V5 and p(Vi) +
p(V2) = p(Vs). Therefore, T'f; ) is a graded Lie algebra. Graded Lie algebra I' = T; .,y /C is a simple
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one because the underlying Lie algebra is simple algebra. It is an easy exercise to check, that I' is
unrefinable graded algebra.]

Denote by Si the symmetric group of rang k and by W(BC,,) the Weyl group of the classical root
system BC,, (it coincides with Weyl groups of both By, and C,). The group W (BC},) coincides with
the group of all linear transformations, which permute the set {+e; } where e; form a basis of linear space.
If;n =4 t?en W(BCy) = Z 2. Let us accept the agreement that W (BCy) = {e} and also Sy = S; = {e},
Zo=75 ={e}

Proposition 13 Assume that n = k+2m > 2. Invariants of the graded Lie algebra I‘?k,m are as follows:
(1) Hor(T(i,my) = H' @ Ho where H' = {z € H | z = }_ Mie:i+)_pjej, 1o Ai+) pj(mod2) =0 (in I »)},
Hai= (w) i

(2) ATy my) = {ow, &, +6i, + 0w, & T ej + 0w, kej, L ej, +ow, k2 +w | 0 € Fojiiy, iz € [,y #
i2;J,J1, 52 € J, j1 # Ja}

(3) the group W(ka,m)) C Aut H,, is isomorphic to the semidirect product of the groups Wy = Si x
W(BCp,) and Wy = Z S-l x L%y (which is normal subgroup); the group Sy acts by permutations of ele-
ments ¢;; the group W(BC,,) acts naturally on the subgroup Z ™ = (e;) and Wy = {g € Aut Hy, | g(z)—
z € (w) Vz € Hy, },

(4) subgroup A(T) is generated by its subgroup Ag of indez 2 and by automorphism t of order 2; Ag is
contained in the subgroup P(GL(k) & GL(2m)) of the connected component of identity G° = PGL(n);
Ag = A} - A and A} C GL(k) consists of all diagonal matrices with =1 on the diagonal; Aj C GL(2m)
is m-dimensional torus consisting of all diagonal matrices, for which the products of j-th and m + j-th
diagonal elements are equal to 1 (j = 1,...,m); t is an external automorphism of Lie algebra gl , of
order 2, which commute with Ap.

Proof follows from the direct calculations.[]

The invariants of the factor-algebra I'; ., /C is equal to invariants of L'k m), except the case m = 0;
in this case the only difference is that 0 ¢ Q(T'( .,))-

Lie algebras Loy i have a certain property, wﬁich allows to define its tensor product with noncom-

mutative graded associative algebra M Denote by {X,Y} the operation XY + Y X in a matrix

g
(2(s))’
algebra.

Proposition 14 Let Llem) = (gl ,,9), a,8 € p(2) be roots and Vy, Vs € Q be rool subspaces. Then
{Va,Va} C Vatptw

Proof is evident. [J

Define the tensor product of a graded associative algebra X = Mfz,“.,z) = (C [H]e, M) (H =F 3* and
the cocycle £ is nondegenerate) and a graded Lie algebra I' = Clkm) = (gl o, ), n = k + 2m. Both
factors of the tensor product C [H]¢ ® gl ,, are equipped with the structure of an associative algebra.
Therefore, the tensor product has the structure of Liealgebra, defined by commutator [X,Y] = XY -Y X.

Evidently, this Lie algebra is isomorphic to gl n, N = 2°n. Denote by H @ Q the set of linear subspaces
{(z)®V | (z) e H,V € Q}.

Proposition 15 The set of linear subspaces H ® Q defines a structure of graded Lie algebra on gl y =
C [H)e ® gl ,. Denote this graded Lie algebra by Lie(¥ ® I'). The quotient algebra Lie(X ® I')/C by it
center C is an unrefinable, simple graded Lie algebra.

The proof of the proposition follows immediately from the lemma below.

Lemma 13 Let z,y € H, E,, E, be relevant basis vectors of C [H]g, Xo € Vo, Xg € Vp, where V,, Vs €
Q. Then [E, ® Xa, By ® Xg] =
=brpy @ (%(&(I’ y) +£(y: .‘B))[Xa, Xﬁ] e %(E(I, y) — &y, z)){XO'l Xﬁ})

Proof follows from the direct calculations. It is important, that in this case £(z,y)é(y,z)~! = (z,y) €
{£1}H) O

It follows from the lemma, that the commutant of linear subspaces Vi, Vo € H ® £ is contained in
a linear subspace from H ® 2. There is the natural embedding p : H ® @ — H & H,(I'). Note that
the commutator of linear subspaces from H ® £ do not corresponds to a sum of elements of the group.

15
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Nevertheless, it can be easily shown, that partial operation on H @ H,,(T) , defined by the mean of the
commutator of linear subspaces, can be extended to a new group operation. Therefore, Lie(X @ I') is a
graded Lie algebra. We omit the proof of unrefinability of its quotient algebra by center. O

We call the graded Lie algebra Lie(ME’z(a)) ® I‘Ek.m))/c’ an algebra of the type Aé(s)_k,m. We suppose,
that s=0and k+2m > 2;ors=1and k+2m > 2;0or s > 1 and k+2m220rk=11:m=0.

Proposition 16 Let I’ = (sl x,Q) be a graded Lie algebra of the type Aa(!)_k_m and s >0, n=k+2m >
2. Then i

(1) Hyr(T) = H' & Ho ® H", where H' ® Ho = Hyr(T{, ), H" = F 3° is an Abelian group, which is
used in the definition of algebra FfZ(s))’.

(2) the map p : @ — Hy(T) is given by the formula: p((z) ® Vo) = a + q(z)w +z where z € H", q(z) is
fized quadratic form on H" (see proposition 9);

3) p(Q) ={at+z|z€ H' ,a € Q: C H ® Ho}, where Q; = {ow, &, +¢€i, + ow,&; L ej + ow, e, +
ej, + ow,x2e; + q(z)w | 0 € F 2;1,41,43 € 1,4y # 12;7, 51,52 € J, j1 # ja}, if m = 0 the element (0,0) is
excluded from Q; = Y
(4) W(T) = W' x W", where W' = W(T'{; ), W" =~ Sp(F 2*) and the action w of the group W is
as follows: for ¢ € W" we have 7(g)(a + z) = o + (¢(9(z) + ¢(z))w + g(z); for g € W' we have
m(g)(a+2z) = g(e) + z (« € H' & Ho,z € H");

(5) the subgroup A(T') is generated by the index two subgroup Ay and an element t of order two; Ay =
A(2,...,2) x A}, where A(2,...,2) C PGL(2) x ... x PGL(2) is a subgroup from the subsection 3.5
formy = ... =my; = 2; Ay C PGL(n) coinsides with the indez two subgroup of the group of diagonal
automorphisms of the graded Lie algebra ka.m)’ A consists of inner automorphisms; t is an order two
outer automorphism of the Lie algebra gl 5, which commut with any element of Ap.

We omit the proof, which is based on a standard algebraic technic. O

5.3 3-d and 4-th series: twisted analogs of the 2-nd series

2
2(s);k;m”

In the proposition 9 the quadratic form ¢(z) on the linear space F ';’-’ over the field IF ; was introduced.
It is known, that there exists exactly two classes of nonequivalent nondegenerate quadratic forms over
IF 5. The difference of two quadratic forms is a linear form. In the proposition 16 different quadratic
forms leads to isomorphic root systems. It is not valid for twisted analogs. Let us fix the denotation ¢(z)
for the form g(z) = Y I_; Azi—1A2i.

For an arbitrary graded Lie algebra I' and a subgroup H of its grading group H,,(I') one can define
the graded subalgebra I'(H), which is the direct summ of all grading subspaces corresponding to roots
lying in H.

We are interesting here in the case: I' = A

The last two series are twisted analogs of A

2
2(s);k;m
H coincides with a kernel of some nontrivial(h)omomorphismt : Hyre(I') — F 5. Homomorphism ¢t we
consider as a linear form on H, (') with values in I 5.

Definition of two linear formst, and t;. We use denotations from proposition 16. We have H,.(I') =
H'@® Ho @ H". Define t1(H') = t1(H") = 0,t1(w) = 1.

Linear form ¢, is defined only for a special set of parameters s, k,m. For s > 0 define t3(H') =
0,f3(w) = 0 and t3|g~ be a fixed nonzero linear form such, that quadratic form p(z) = ¢(z) + ta(z),
(z € H") is not equivalent to g(z). In the case s = 0 and k = 0 the grading group H,,(I") is decomposed
into the direct sum H’ & Hp, where H' = {3 pje; | 3 pj(2) = 0}. Define ta(w) = 1, ta(ej, —€j,) =
0, tg(e_,', +ey.) =1l

and H is a subgroup of H,(T') of index 2. Therefore,

Lemma 14 Lett =t, ort =15. Then
(1) the kernel of t is generated by the roots, lying in ity and do not contains the root w;
(2) an arbitrary linear formt' : Hy(T') — [ 5, which satisfies the condition (1), can be transformed either

to t; or to ty by an automorphism from the group W(F)

Proof follows from the description of the groups H,,(I') and W(T) (see proposition 16). O
Denote by B‘DZ(S);k;m the subalgebra of A22(.s)-k-m' which is constructed with the use of ¢;, and by

C2(s);k;m those one, which is constructed with the use of 5.

16
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We describe the invariants of BDg,).;.., and Cg,y.,, in propositions below. We use the denota-

tions of the proposition 16, particularly, the denotations of subgroups H', Hy, H” in the decomposition
Hy (A ) = H'6 Hoo .

Proposition 17 LetT' = BDg(,y.;... = (8 ,€). Then

(1) T is unrefinable simple graded Lie algebra;

(2) @ =s0 v where N = 2°(k + 2m);

(3) Hyr(T) = H' @ H", where H', H" are subgroups of Hﬂr(A%(a);k;m)’ defined in proposition 16;

4) p(Q) ={a+z |z€ H",a € Q, C H'}, where Q. is defined as follows: define Q' = {0,¢;, +¢€i,,6: %
ej):tejlﬂ:ejz l iﬂili i? = Ilil '_Ié iz;j:jl:jz = J:jl # j?}p then Qx =G ‘ifq(l') '_fé O; Qz = Q’U{ﬂ:?ﬁ: |] € JT}
ifg(z) =0and m#0orz#0; Qe = QU {£2¢; | j€J}\{0} ifg(z) =0, m =0 and z = 0;

(4) W(T) = Wy x Wa, where Wy = O4(F 3°) is the orthogonal group of the quadratic form q(z), Wy =
Sy x W(BC},) and the action of Wy x Wy is component-wise.

For the linear form t; we have

Proposition 18 Let I' = Cg(,y4., = (8 ,9). Then

(1) T is unrefinable simple graded Lie algebra;

(2) g =sp y where N = 2*(k + 2m);

(3) Hyr(T) = H'@H'"', where the subgroup H' was defined in proposition 16, H"' = {ty(z)w+z |z € H"}
(4) p(Q) ={a+y|ye H" a € Qy C H'}, where Q is defined as follows: define Q' = {0,¢&;, +¢&i,,6: £
ej,kej, kej, | 1,101,102 € 1,0y # i2;,J1,52 € J, 1 # 2} and p(y) = q(y) +12(y), then Qy = Q' if p(y) # 0;
Q=QU{x2; |j€J}ifply) =0andm#0 ory#0; Q, = QU{x2e; | j € J}\{0} if p(y) =0
and m =0,y = 0;

(4) W(T) = Wy x Wa, where Wy = O,(F 3*) is orthogonal group of the quadratic form p(z), Wy =
Sk x W(BCy,) and the action of Wy x Wy 1is component-wise.

We omit the description of subgroups of diagonal automorphisms A(I') C G for these twisted series.
It can be easily derived from the proposition 16.

5.4 Classification of unrefinable gradings of simple Lie algebras of the clas-
sical type.

In this section we show that all unrefinable gradings of finite-dimensional simple Lie algebras of classical
type are grading from the series defined above.

Theorem 3 Assume that I' = (g ,Q) s a finite-dimensional, unrefinable graded Lie algebra and g is a
simple Lie algebra from the list sl ,,50 ,,5p ,,, but g # so g. Then I is isomorphic to one of graded Lie
algebms A%mlr-'lmt);n’ Azz(s);k;m’ BDZ(’)iklm’ Cz(a)?_k;m'

Proof. Assume first, that g = sl y. By proposition 1, it is sufficient to classify maximal diagonal-
izable subgroups of the group G = Autsl 5. The connected component G° of the identity is the group
PGL(N). Suppose, that A is an arbitrary maximal diagonalizable subgroup of the group GG. There are
two possibilities: either A C G° or the subgroup Ay = ANG is a proper subgroup of A.

1) A C G° = PGL(N). It is known, that PGL(N) = Muy. Therefore, A coincides with the group
of diagonal automorphisms of an unrefinable graded associative algebra ¥ = (Mpy,2). It can be easily
checked, that in this case I' = Lie(X)/C. Thus, I' coincides with a graded Lie algebra from the first series
Almh...,m, nt
: 2) Let )Ao = AN G° be a proper subgroup of A. Then Ay is the subgroup of A of index 2 because
G/G° =7 Do

By proposition 4, Ag = A(my,...,m;)x A’, where N=my...mgn, G°D PGL(my)x...x PGL(m,) x
PGL(n), A(my,...,m,) is the subgroup of PGL(m;) x ... x PGL(m,), defined in the section 3.5, and
A’ is a subgroup of a maximal torus of PGL(n). Let t € A\ Ap. Then ¢ is an outer automorphism of
the Lie algebra sl 5. Clearly, ¢ commutes with all elements of Ay. Moreover, the maximality of A leads
to a property: every element ¢ € G°, which commutes with ¢ and with all elements of the subgroup
Ap, lies in Ap. It is easy to show, that the element ¢ normalize the subgroup K. As a corollary, it
can be checked, that this is possible only if m; = ... = m, = 2. Moreover, the cenralizer of A’ in the

17
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group PGL(n) coincides with a maximal torus 7' C PGL(n). Evidently, ¢ belongs to the normalizer of
T. Therefore, t defines the order-two automorphism of 7' and A’ coincides with the set of fixed points of
this automorphism. Using the properties of A,which are proven above, it can be easily shown, that the
group A coincides with the group of all diagonal automorphisms of a graded Lie algebra from the series
Aé(-‘) o (N =2%(k +2m)). Thus, I = A2(a) o

To complete the proof of the theorem, assume that g = so y or g = sp 5. In any case, we may
include the Lie algebra g into the Lie algebra sl 5. Denote by G the group of all automorphisms of
sl y, which preserves the subalgebra g . It is known, that in any case, except of g = so (8), there
exists an isomorphism G = 7, x G, where G = Autg. The factor Z 5 is generated by an outer
automorphism ¢ of sl  and g coincides with the set of fixed points of ¢. It follows immediately from this
fact, that a maximal diagonalizable subgroup A of G, together with the element ¢ generates the maximal
diagonalizable subgroup A of the group Autsl y. Hence, A coincides with a group of all diagonal
automorphisms of an unrefinable graded Lie algebra I'" = (sl 5, Q') from the second series. We already
have described all such groups. Thus, in order to find all possible subgroups A it is enough to choose
index-two subgroups of all possible A with certain (easily stated) properties. It can be proven, that just
the subgroups of all fixed points of the automorphisms ¢; and ¢, from the lemma 14 are subgroups of all
diagonal automorphisms of unrefinable gradings of Lie algebras so y and sp . This statement gives the
classification in these cases. [J

6 Special unrefinable graded Lie algebras

In this section we classify unrefinable gradings of Lie algebras G, F4, Eg and Ds.

Let us briefly describe the main point in the classification of unrefinable gradings of a Lie algebra g
of a special type. Due to the proposition 1, it is sufficient to classify maximal diagonalizable subgroups
of the group G = Autg up to conjugation in G. We have classified these subgroups using the inductive
arguments. Every diagonalizable subgroup A of G is contained in a reductive subgroup K of the maximal
rang of the group G. As K, one can choose the centralizer of any nontrivial element a € A, which belongs
to the identity component G°. Moreover, if A C G°, then one can choose K being connected subgroup.
Clearly, A is a maximal diagonalizable subgroup of K. The classification of the reductive subgroups of
the maximal rank is well-known (it was done by Dynkin [5] for the connected subgroups). Thus, we can
reduce the problem to the one for smaller groups. Several technical problems appears on this way, and
additional arguments were used to solve them.

6.1 Maximal diagonalizable subgroups of the group G = Aut G,

It is known, that the group G is a connected simply connected Lie group.

Denote by A; a maximal torus of G and by A; a Jordan subgroup of G. The subgroup As can be
defined as follows (see [2], [3]). The group G contains the connected subgroup K of the type 24,. It
can be easily shown that K = (SL(2) x SL(2))/Cy; where Cy = {(AE,AE)|A = %1} is the order two
subgroup of the center of the group SL(2) x SL(2). There exists a unique (up to conjugation) maximal
diagonalizable subgroup Zg of the group K. This subgroup, considered as a subgroup of G5 is called
Jordan subgroup.

Theorem 4 Let A be a mazimal diagonalizable subgroup of the group Go. Then A is conjugated either
to (1) the mazimal torus Ay = T? or to (2) the Jordan subgroup Ay = Z3. A; and Ay are mazimal
diagonalizable subgroups of G».

6.2 Maximal diagonalizable subgroups of the group G = Aut F}

It is known, that the group G is a connected simply cpnnected Lie group. Let us formulate several facts
about the definite subgroups of the group G.

Lemma 15 Let G = Fy4. Then

(1) there exists a unique , up to conjugation, connecied subgroup Ky of the type 2A,;

(2) K1 = (SL(3) x SL(3))/C1 where C; = {(AE,AE) | A€ C*, A3 =1},

(3) there exists a unique , up to conjugation, connected subgroup Ko of the type Ay + Cs;
(4) K2 = (SL(2) x Sp(6))/C2 where Cy = {(AE,AE) | A = £1}.
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Denote by K3 the subgroup of the group K2, which is isomorphic to (SL(2) x (Sp(2) ® SO(3))) /Ca,
where the tensor product of the linear groups Sp(2) ® SO(3) is the subgroup of the factor Sp(6).

Lemma 16 The subgroup Kz is isomorphic to the group
(SL(2) x SL(2))/{(AE, AE)|A = £1} x SO(3).

The classification for F4 is given in the theorem:

Theorem 5 Let A be a marimal diagonalizable subgroup of the group Fy. Then A is conjugated to a
subgroup from the list:
(1) the mazimal torus Ay = T*;
(2) the mazimal diagonalizable subgroup Ay = Z32xT* of Kg;
(3) the mazimal diagonalizable subgroup Az = Z 5> of K3;
(4) the mazimal diagonalizable subgroup Aq = Z 3 of K.
Ay, Ag, A3, Ay are mazimal diagonalizable subgroups of the group Fi.

6.3 Maximal diagonalizable subgroups of the group G = Aut D,

It is known, that the group G can be factorized into the semidirect product of the symmetric subgroup
S5 and the connected normal subgroup G° = SO(8)/Z ».

Lemma 17 Let G = Aut Dy. Then

(1) there exists a unique , up to conjugation, closed subgroup K, such that K, = Z 3 x PGL(3) and the
factor Z 3 is generated by an external automorphism of Dy;

(2) there exists a unique , up to conjugation, connected subgroup Ky such that Ky = Z 3 x Gz and the
factor Z 3 is generated by an external automorphism of Dy.

The classification for the case Dy is given in the theorem:

Theorem 6 Let A be a mazimal diagonalizable subgroup A of the group G = Aut Ds. Then either A
defines a classical grading of the Lie algebra g = Dy or A is conjugated to a subgroup from the list:
(1) the mazimal diagonalizable subgroup Ay = Z 3 x T? of K1 ;
(2) the mazimal diagonalizable subgroup As = Z3 of Ky,
(3) the mazimal diagonalizable subgroup A3 =Z 3 % Zg of K.
Ay, Ag, A3 are mazimal diagonalizable subgroups of the group Aut Dy.

6.4 Maximal diagonalizable subgroups of the group G = Aut Eg

It is known, that the group G can be factorized into the semidirect product of a subgroup Z ; and the
identity component G°, which is the quotient group of the connected simply connected group Eg by its
center C =Z 3.

Lemma 18 Let G = Aut Eg. Then

(1) there exists a unique , up to conjugation, connected subgroup K of the type 3As;

(2) K1 = (SL(3) x SL(3) x SL(3))/C1 where Cy = {(ME,AE,M3E) | A3 =1, Adads =1}

(3) there exists a unique , up to conjugation, connected subgroup Ko of the type Ay + As;

(4) K3 = (SL(2) x (SL(6)/Z 3))/C3 where Cy ={(AE, AE) | A=#1);

(5) there exzists a unique , up to conjugation, connected subgroup Ka such that K3 = Z 3 X Fy and the
factor 7 5 is generated by an external automorphism of Eg;

(5) there ezists a unique , up to conjugation, connected subgroup K4 such that Ky = 7 3 % (Sp(8)/Z 2)
and the factor Z o is generated by an external automorphism of Es.

Denote by K5 the subgroup of the group Kz, which is isomorphic to the group (SL(2) x (SL(2) ®
SL(3))/Z 3)/C2, where the factor-group of the tensor product of the linear groups (SL(2) ® SL(3))/Z 3
is a subgroup of the factor SL(6)/Z 3 of K.

Lemma 19 The subgroup Ks is isomorphic to the group
((SL(2) x SL(2)/{(AE, AE)|A = £1}) x (SL(3)/Z 3).

The classification for Eg is given in the theorem:
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Theorem 7 Let A be a mazimal diagonalizable subgroup of the group G = Aut Eg. Then A 1s conjugated
to a subgroup from the list:
(1) the mazimal torus Ay = T®;
(2) the mazimal diagonalizable subgroup As = Zé %7 of Ks;
(3) the mazimal diagonalizable subgroup Az = Z 5 x T? of Ks;
(4) the mazimal diagonalizable subgroup Ay =Z 35 x Z 3 of Ks;
(5) the mazimal diagonalizable subgroup As =7 3 of Ky ;
(6) the mazimal diagonalizable subgroup Ag = 7 5 x T* of K3;
(7) the mazimal diagonalizable subgroup A7 = Z 5 x T* of K3;
(8) the mazimal diagonalizable subgroup Ag = Z 5 of K3;
(9) the mazimal diagonalizable subgroup Ag = 7Z 5 x Z 3 of Ks;
(10) the mazimal diagonalizable subgroup Ao = Z 3 x T? of Kq4;
(11) the mazimal diagonalizable subgroup Ay, =7 5 2 x T of Ka;
(12) the mazimal diagonalizable subgroup Ay = Z % of Ky.
The subgroups Ay, ..., A2 are mazimal daagonahzable subgroups of the group Aut Ej.
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