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Let H be a complex Hilbert space. If H is �nite dimensional, then one knows from the
Borel-Weil theorem that the �nite dimensional irreducible representations of the general
linear group GL(H) can be realized geometrically as the natural action of the group GL(H)
on the space of global holomorphic sections of a holomorphic line bundle over a space of
�ags in H. By choosing a basis of H, one can identify this space of holomorphic sections
with a space of holomorphic functions on GL(H) that are certain polynomial expressions
in minors of the matrices corresponding to the elements of GL(H).

In this overview we will give an in�nite dimensional analogue of all these
representations. Thereto we take a separable Hilbert space H. In H we consider a collection
of �ags that can be given a Hilbert space structure. It is a homogeneous space for an
analogue of the general linear group, the so-called restricted linear group. There is a proper
analogue of the notion of maximal torus in this restricted linear group. Over the �ag variety
there exist line bundles that are similar to the �nite dimensional ones. In the �dominant�
case the space of global holomorphic sections of such a line bundle turns out to be non-
trivial. However, the action of the restricted linear group can, in general, not be lifted to
the line bundle under consideration and one has to pass to a central extension of this group.
The representation space contains a unique section on which the maximal torus acts by
the dominant weight. It is the generator of an irreducible highest weight module of the
central extension.
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� 1. The �ag variety

Let H be a separable complex Hilbert space with innerproduct < ·, ·>. One will
consider certain �nite chains of subspaces in H and they will be called �ags as in
the �nite dimensional case. First one has to specify the �size� of the components of
the �ag. Therefore one starts with an orthogonal decomposition of H,

H = H1 ⊕ . . .⊕Hm, where Hi ⊥ Hj for i 6= j. (1.1)

1This work has been performed within the NWO-program Geometric Aspects of Quantum
Theory and Integrable Systems with the project number 047.017.015.
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One assumes that mi = dimHi satis�es 1 6 mi 6∞ and that H has a Hilbert basis
indexed by the integers.

Remark 1. A natural way to get such a decomposition is to consider in GL(H) the
maximal torus T (N ) of all invertible diagonal operators that di�er from the identity
by a nuclear operator. Concretely, it consists of all operators of the form

diag({1 + ts}), with 1 + ts 6= 0 and
∑
s∈Z

|ts| <∞.

In T (N ) we have the dense subgroup Tf given by

Tf = {t | t = diag({1 + ts}) ∈ T (N ), ts 6= 0 for only �nitely many s in Z}

Any analytic grouphomomorphism of Tf into C∗ has the form

t = diag((1 + ts)) 7−→
∏
s∈Z

(1 + ts)
ms = χm(t),

where m = {ms}, with ms ∈ Z for all s ∈ Z. This character χm can be continued to
an analytic character of T (N ) if and only if there are only �nitely many di�erent

ms, s ∈ Z. This extension of χm is also denoted by χm and one writes T̂ for the
group of analytic characters of T (N ). To each χm one associates the decomposition
corresponding to the spans of the directions with the same value of ms.

Let pi, 1 6 i 6 m, be the orthogonal projection of H onto Hi. Then we will use
throughout this paper the following

Notation 1. If g belongs to B(H), the space of bounded linear operators from H
to H, then g = (gij), 1 6 i 6 m and 1 6 j 6 m, denotes the decomposition of g
with respect to the {Hi | 1 6 i 6 m}. That is to say gij = pi ◦ g | Hj.

To the decomposition (1) one associates the basic �ag F (0) given by

0 ⊂ H1 ⊂ . . . ⊂
r⊕
j=1

Hj ⊂ . . . ⊂ H.

In H one considers �ags F = {F (0), . . . , F (m)}, that is to say chains of closed
subspaces of H,

{0} = F (0) ⊂ F (1) ⊂ . . . ⊂ F (m) = H,

that are of the same �size� as the basic �ag F (0), i.e. for all i, 1 6 i 6 m,

dim(F (i)/F (i− 1)) = dimHi .

To such a �ag F is associated an orthogonal decomposition of H,

H = F1 ⊕ . . .⊕ Fm , where Fi = F (i) ∩ F (i− 1)⊥.
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One will denote such a �ag F by F = {F (0), . . . , F (m)} as well as F = {F1, . . . , Fm}.
The class of �ags one obtains in this way is still too wide and it will be required

that our �ags do not di�er too much from the basic �ag.

De�nition 1. Let F be the collection of �ags F = {F1, . . . , Fm}, satisfying
dimFi = dimHi, and for all i and j with j 6= i, the orthogonal projection pj :
Fi → Hj is a Hilbert-Schmidt operator. One calls F the �ag variety corresponding
to the decomposition (1).

As in the �nite dimensional case, the space F is a homogeneous space for a
certain unitary group. Let F = {F1, . . . , Fm} belong to F. From the de�nition of F
one knows that there is for each i, 1 6 i 6 m, an isometry ui between Hi and Fi. If
one puts u = u1⊕ . . .⊕ um, then u belongs to the group of unitary transformations,
U(H), of H and for each i, 1 6 i 6 m, one has

u

(
i⊕

j=1

Hj

)
=

i⊕
j=1

Fj.

In other words, the �ag F is the image under u of the basic �ag. The condition
de�ning F implies that u = (uij) satis�es: uij is a Hilbert-Schmidt operator for
i 6= j. This brings us to the introduction of the following group.

De�nition 2. The restricted unitary group, Ures(H), consists of all u = (uij) in
U(H) such that uij is a Hilbert-Schmidt operator if i 6= j.

Clearly the stabilizer of F (0) in Ures(H) is equal to
m∏
i=1

U(Hi) and therefore one

can identify F with the homogeneous space

Ures(H)
/ m∏

i=1

U(Hi).

For several reasons, like the description of the manifold structure on F and the
consideration of non-unitary �ows on F, it is convenient to have a description of F
as the homogeneous space of a larger group of automorphisms of H. The Banach
structure of this group follows directly from that of its Lie algebra. Therefore one
starts with the analogue of the Lie algebra of the general linear group.

De�nition 3. A restricted endomorphism of H is a u = (uij) in B(H) such that uij
is a Hilbert-Schmidt operator for all i 6= j. One denotes the space of all restricted
endomorphisms of H by Bres(H).

The space Bres(H) is a subalgebra of B(H) since the collection of Hilbert-Schmidt
operators is closed under left and right multiplication with bounded operators. Hence
it is also a Lie subalgebra of the Lie algebra B(H). On Bres(H) one will introduce a
norm. The algebra Bres(H) becomes a Banach algebra if one equips it with the norm
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‖ · ‖2 de�ned by

‖u‖2 = ‖u‖+
∑
i 6=j

‖uij‖HS .

Since the adjoint of a Hilbert-Schmidt operator is again Hilbert-Schmidt, it is
clear that Bres(H) is stable under �taking adjoints�. If GL(H) denotes the group of
invertible elements in B(H), then one considers

De�nition 4. The restricted linear group GLres(H) consists of g such that g belongs
to GL(H) ∩ Bres(H).

One easily veri�es that GLres(H) consists of the invertible elements in Bres(H).
Thus one can identify the tangent space at any point of GLres(H) with Bres(H).

With each g in GLres(H) one can associate the �ag

0 ⊂ gH1 ⊂ g(H1 ⊕H2) ⊂ . . . g(H1 ⊕ . . .⊕Hi) ⊂ . . . ⊂ H.

From the de�nition of GLres(H) one sees directly that this �ag belongs to F. The
stabilizer in GLres(H) of the basic �ag is the �parabolic subgroup� P consisting of
upper triangular matrices g ∈ GLres(H):

g =


g11 . . . . . . g1m

0
. . .

...
...

. . . . . .
...

0 . . . 0 gmm

 ,

with gii ∈ GLres(Hi), 1 6 i 6 m. Thus one can identify F also with the homogeneous
space GLres(H)/P . Let τ : GLres(H) → F be the projection τ(g) = g · F (0). On F
one puts the quotient topology that makes τ into an open continuous map.

To get an idea how the space F locally looks like near the basic �ag, one considers
the set Ω in GLres(H) consisting of g such that matrices g11 . . . g1i

...
...

gi1 . . . gii


belong to GLres(H1 ⊕ . . .⊕Hi) for all i 6 m. The set Ω is open and, as in the �nite
dimensional case, can be decomposed. For, let U− be the subgroup of GLres(H)
consisting of g = (gij) such that gii = IdHi for all i and gij = 0 for j > i. The
group U− is given the topology induced by that of GLres(H). The set Ω has a similar
description as in the �nite dimensional situation:

Lemma 1 The map (u, p) 7→ up from U−×P → GLres(H) determines a homeomor-
phism between U− × P and Ω.
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An easy conseqence is that the �agvariety F is a Hilbert manifold based on the
Lie algebra E of U−.

� 2. The connected components of F

Let g = (gij) be an element of GLres(H) and put g−1 = (hij). Then one has, by
de�nition for all i, 1 6 i 6 m,

giihii = IdHi −
∑
k 6=i

gikhki.

This implies that each gii is a Fredholm operator, that is to say it has a �nite
dimensional kernel and cokernel. The collection of Fredholm operators on a Hilbert
space K is denoted by Φ(K) and it is an open part of the space B(K). Its connected
components are given by the index, which is de�ned as

ind(B) = dim ker(B)− dim coker(B), for B ∈ Φ(K).

Since all o�-diagonal operators are Hilbert-Schmidt and hence compact, the operator

g̃ =

 g11 0
. . .

0 gmm

 ,

where g = (gij) ∈ GLres(H), is a Fredholm operator of index zero. Hence the indices
of the gii, 1 6 i 6 m, satisfy

m∑
i=1

ind(gii) = 0 and ind(gkk) = 0 if mk <∞.

These relations lead to the introduction of the subgroup Z of Zm consisting of vectors
z = (z1, . . . , zm), zi ∈ Z, such that

m∑
i=1

zi = 0, and zk = 0 if mk <∞.

The standard properties of the index imply that the map i : GLres(H)→ Z,

g 7→ (ind(g11), . . . , ind(gmm)),

is a continuous grouphomomorphism. Hence the subsets GL(z)
res(H) of GLres(H),

consisting of g such that i(g) = z with z ∈ Z are open. In fact, they are exactly the
connected components of GLres(H), for one can show

Proposition 1 For each z ∈ Z, the set GL(z)
res(H) is non-empty and connected.
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Since the parabolic group P is connected, one concludes for the �ag variety

Corollary 3 The connected components of F are given by

F(z) =
{
g.F (0)

∣∣ g ∈ GL(z)
res(H)

}
.

Remark 2. A holomorphic line bundle L over F consists simply of a collection
of holomorphic line bundles {Lz → F(z) | z ∈ Z}. Therefore one restricts one's
attention to holomorphic line bundles over F(0) in the next section.

� 3. The holomorphic line bundles over F(0)

Each F in F(0) is equal to g.F (0) with g ∈ GLres(H) of the form

(a) For each i, 1 6 i 6 m, gii = IdHi+ a ��nite-size� operator.

(b) For all i and j, i < j, gij is a ��nite-size� operator.

(c) For all i and j, j < i, gij belongs to HS(Hj, Hi).

Note that for all the operators gii from (a) one can speak of det(gii). Since one is
working in an analytic setting it is convenient to consider a somewhat wider class
of operators such that on one hand the framework is complete and on the other one
can take determinants of certain minors. Recall that the determinant is de�ned for
each operator of the form �identity + a nuclear operator�. Therefore one introduces
B2(H) consisting of g ∈ Bres(H) such that gii− IdHi ∈ N (Hi) and gij ∈ HS(Hj, Hi)
for i 6= j. On B2(H) one puts a di�erent topology than the one induced by Bres(H).
For, let Z be the subspace of Bres(H) consisting of b ∈ Bres(H) such that bii ∈ N (Hi)
and bij ∈ HS(Hj, Hi) for i 6= j. Then Z is a Banach space if it is equipped it with
the norm ‖ · ‖Z given by

‖b‖Z =
∑
i 6=j

‖bij‖HS +
m∑
i=1

‖bii‖tr.

The collection B2(H) is nothing but Z shifted by the identity and one transfers
the Banach structure on Z to B2(H) by means of the map g 7→ g + Id. Since the
product of two Hilbert-Schmidt operators is nuclear, one sees that B2(H) is closed
under multiplication. Moreover the multiplication with an element of B2(H) is an
analytic map from B2(H) to itself. In B2(H) one has the subgroup U− and its
�adjoint� the group

U+ = {u∗ | u ∈ U−} .
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Consider an element b in B2(H). Since bii has the form �IdHi+ a nuclear operator�,

one can �nd an operator b̃ii in GL(Hi) such that b̃ii − IdHi and (̃bii)
−1 − IdHi both

belong to N (Hi). Now one de�nes u = (uij) in U− and v = (vij) in U+ by

uii = vii = IdHi , uij = −bij (̃bjj)−1 if i > j and uij = 0 if j > i,

vij = −(̃bii)
−1bij if i < j and vij = 0 if i > j.

A direct veri�cation shows that ubv belongs to Id + N (H). Since B2(H) is closed
with respect to taking adjoints, there holds

Lemma 2 Every b ∈ B2(H) can be written in the form b = u1b1v1 or b = v2b2u2,
where u1 and u2 belong to U−, v2 and v1 belong to U+ and b1 and b2 lie in Id+N (H).

If one takes into account that for each i, the operator b̃ii can be chosen of the
form bii + fii, where fii is �nite dimensional, then for all c in B2(H) su�ciently
close to b one can take c̃ii = cii + fii. By using this, one shows easily that the map
det : B2(H)→ C, de�ned by det(b) = det(u1b1v1) = det(b1), where b = u1b1v1 as in
the lemma above, is well-de�ned and analytic on B2(H).

Remark 3. Since the operators in Id + N (H) lie dense in B2(H) and since det is
multiplicative on Id +N (H), one gets that for each b1 and b2 in B2(H)

det(b1b2) = det(b1) det(b2)

From the fact that an operator g of the form Id +N (H) is invertible if and only
if det(g) is non-zero, one sees that the invertible elements of B2(H) form a group G
consisting of b ∈ B2(H) with det(b) 6= 0. Clearly G is a Banach Lie group with Lie
algebra Z and it acts analytically and transitively on F(0). The stabilizer T of F (0)

in G consists of upper triangular matrices

t =


t11 . . . t1m

0
...

...
. . .

...
0 . . . 0 tmm


with tii ∈ {Id + N (Hi)} ∩ GL(Hi) and tij ∈ HS(Hj, Hi) for j > i. Thus one can
identity F(0) with the homogeneous space G/T .

For each k = (k1, . . . , km) in Zm, one de�nes ψk in T̂ by

ψk = (diag{1 + ts}) =
∏
s1∈S1

(1 + ts1)k1
∏
s2∈S2

(1 + ts2)k2 . . .
∏

sm∈Sm

(1 + tsm)km .

Clearly ψk extends to an analytic character of T by means of the formula

ψk(t) = det(t11)k1 . . . det(tmm)km .
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To each ψk one can associate a holomorphic line bundle L(k) over F(0) = G/T . It is
de�ned as follows: consider on the space T × C the equivalence relation

(g1, λ1) ∼ (g2, λ2)⇔ g1 = g2 ◦ t, with t ∈ T and λ2 = λ1ψk(t).

The space T ×C modulo this equivalence relation is L(k). For each g ∈ G and each
λ in C, one denotes the equivalence class to which the pair (g, λ) belongs by [g, λ].
There is a natural projection πk : L(k)→ F(0) given by

πk([g, λ]) = g · F (0).

The space L(k) is a Hilbert manifold based on the Hilbert space E ⊕ C.

� 4. The central extension

There is a natural analytic action of the group G on the space L(k) by left
translations

g1 · [g2, λ] = [g1g2, λ].

This is a lifting of the natural action of G on F(0) to one on L(k). However, the
natural action of GL(0)

res(H) can, in general, not be lifted to one on L(k). Such an
attempt may lead to nontrivial central extensions of GL(0)

res(H) as one will show.
Note that each g in GL(0)

res(H) can be written as g = dg2, with g2 ∈ G and d
belonging to the �diagonal� subgroup D of GL(0)

res(H) consisting of g = (gij) with
gij = 0 if i 6= j. Clearly the group D normalizes the group G. Since the determinant
of an operator of the form �identity + nuclear� is invariant under conjugation with
an invertible operator, one gets that D centralizes each ψk, i.e. for each t in T and
each d in D there holds

ψk(d t d
−1) = ψk(t).

This fact permits you to lift the action of D on F(0) to one on L(k) by means of

d · [g, λ] = [d g d−1, λ].

For an element d from D∩G, this action di�ers by a factor ψk(d
−1) from the action

induced by that of G. Hence one cannot combine them to an action of GL(0)
res(H) on

F(0). To overcome this problem a group extension G of GL(0)
res(H) will be built. It is

de�ned by

G =
{

(g, d)
∣∣ g ∈ GL(0)

res(H), d ∈ D and gd−1 ∈ G
}
.

As one veri�es directly this group acts on L(k) by means of

(g, d)[g1, λ1] = [gg1d
−1, λ1].
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It is simply the combination of the G-action and the D-action given above. Let
π : G → GL(0)

res(H) be the canonical projection, i.e. π((g, d)) = g for all (g, d) ∈ G.
For certain subgroups of GL(0)

res(H) there exist several ways to embed them into
G. Therefore we introduce special notations for two of them. Let i resp. j be the
embedding of G resp. D into G given by

i(g) = (g, Id) and j(d) = (d, d).

As a group G is the semi-direct product of i(G) and j(D). We equip each GL(Hi)
with the operator norm topology and we put on j(D) the product Banach Lie group
structure. On i(G) we take the Banach structure based on Z. The conjugation with
an element d of D de�nes an analytic di�eomorphism of G. Hence if we put on G
the product topology of i(G) and j(D), it becomes a Banach Lie group based on

m⊕
i=1

B(Hi)⊕Z.

The group G is a �ber bundle over GL(0)
res(H) with �ber T ∩ D. Next one tries

to minimalize the extension of GL(0)
res(H) that acts on F(0) and L(k). Thereto one

considers the action of the kernel of π on L(k)

(Id, d) · [g, λ] = [gd−1, λ] = [g, ψk(d
−1)λ].

In particular the subgroup D(k) of G consisting of (Id, d) with ψk(d) = 1 acts
trivially on L(k) and one sees that it su�ces to consider the extension G(k) =
G/D(k) of GL(0)

res(H). If the character ψk is trivial, i. e. k = 0, then G(k) is just

GL(0)
res(H). For k 6= 0, one computes directly that G(k) is a central extension of

GL(0)
res(H) with Ker(π)/D(k) ∼= C∗.
One can describe such an extension with a Borel 2-cocycle α : GL(0)

res(H) ×
GL(0)

res(H) → C∗. It can be constructed as follows: take a section ρ of the �ber
bundle G

π→ GL(0)
res(H), i. e. for each g in GL(0)

res(H) one has

ρ(g) = (g, q(g)) with q(g) ∈ D.

By de�nition there holds for each g1 and g2 in GL(0)
res(H) that

q(g1) q(g2) q(g1 g2)−1 ∈ D ∩ G.

Thus one gets for the action on L(k) the relation

ρ(g1g2) · [g, λ] = ρ(g1) ·
{
ρ(g2) · [g, λ ψk(q(g1) q(g2) q(g1 g2)−1)]

}
:= ρ(g1) ·

{
ρ(g2) · [g, λ α(g1, g2)−1]

}
.

The group G(k) is then isomorphic as a group to the product space GL(0)
res(H)×C∗

with the multiplication

(g1, λ1) ∗ (g2, λ2) = (g1 g2, λ1 λ2 α (g1, g2)).

A detailed analysis of this central extension yields the following general result:
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Theorem 1

(a) The extension G(k) is always trivial if there is at most one in�nite mi.

(b) If there are at least two in�nite dimensional components in the basic �ag, then
G(k) is trivial if and only if for all i and j,

mi = mj =∞⇒ ki = kj.

(c) If ki 6= kj for in�nite dimensional Hi and Hj, then the corresponding Lie
algebra 2-cocycle for the extension G(k) is given by

dα(X, Y ) =
m∑
i=1

ki Trace

{∑
j 6=i

XijYji −
∑
j 6=i

YijXji

}
.

� 5. Holomorphic sections of L(k)

Let L(k) denote the space of global holomorphic sections of L(k). The space L(k)
is given the topology of uniform convergence on compact subsets of F(0). It becomes
then a complete locally convex space. Let f : F(0) → L(k) belong to L(k) then it
can be written as

f(g · F (0)) = [g, f(g)], for all g ∈ G,
where f : G → C is a holomorphic function satisfying

f(gt) = f(g)ψk(t)
−1 for all g ∈ G and all t ∈ T . (5.2)

Thus we can identify L(k) with the space of holomorphic functions on G that satisfy
this condition. Since each (g, d) in G acts as an analytic di�eomorphism on as well
F(0) as L(k), one gets a natural action of G on L(k) that corresponds on the functions
on G satisfying (2) to

(g, d)(f)(g1) = f(g−1 g1 d), with g1 ∈ G and (g, d) ∈ G.

By approximating the �ag variety F(0) with �nite dimensional �ag varieties and
using the representation theory in that case, one arrives at the following results:

Theorem 2

(a) The space L(k) is non-zero if and only if k1 6 . . . 6 km.

(b) If the space L(k) is non-zero, then the space of vectors in L(k) on which T (N )
acts by ψk is one-dimensional.

(c) Let v be a nonzero in L(k) on which T (N ) acts by ψk, then it is the generator
of an irreducible highest weight module of G(k).
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