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In this article, we evaluate �higher depth determinants� of Laplacians on the compact
Riemann surfaces with negative constant curvature. This is a summary of the results in
the forthcoming paper [5]
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� 1. Introduction

Let T be an operator on some space. We assume that T has only discrete
spectrum λ0 6 λ1 6 . . . 6 λn 6 . . . → +∞ and the multiplicity of each eigenvalue
λj is �nite. De�ne the spectral zeta function ζT (ω, z) attached to T of Hurwitz's
type by

ζT (w, z) :=
∞∑
j=0

(λj + z)−w.

We assume that the series converges absolutely in some right half w-plane (uniformly
for z on any compact set) and can be continued meromorphically to a region
containing w = 1− r for r ∈ N. Moreover, we assume that ζT (w, z) is holomorphic
at w = 1− r. In this case, we de�ne a higher depth determinant of T of depth r by

Detr(T + z) := exp

(
− ∂

∂w
ζT (w, z)

∣∣∣
w=1−r

)
.

This can be considered as a determinant analogue of the Milnor gamma function

Γr(z) := exp(
∂

∂w
ζ(w, z)|w=1−r)

studied in [7] (see also [4]). Here ζ(w, z) :=
∑∞

n=0(n + z)−w is the Hurwitz zeta
function. Note that det(T + z) := Det1(T + z) (with z = 0) gives the usual
�normalized determinant� of T (see, e.g., [9]).
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The aim of the present paper is to evaluate the higher depth determinants when
T is the Laplacian ∆Γ on the compact Riemann surface R = Γ\H, where H is the
complex upper half plane with the standard Poincar�e metric and Γ is a discrete,
co-compact torsion-free subgroup of SL2(R). We show the following theorem, which
gives a generalization of the result for r = 1 in [11] (see also [8]).

Theorem 1.1 [5] The higher depth determinants Detr(∆Γ − s(1 − s)) can be
explicitly expressed as a product of the multiple gamma functions and �Milnor-Selberg
zeta functions�.

This is a summary article; readers who are interested in this topic can �nd the
detailed proof of the above result in the forthcoming paper [5]. See also [13] for
explicit calculations of the higher depth determinants of the Laplacian on spheres
in higher dimensions.

� 2. A product expression of Detr(∆Γ − s(1− s))

We �rst recall the Selberg trace formula for the Riemann surface R = Γ\H of
genus g > 2. Let f be a function whose Fourier transform

f̂(r) :=

∫ ∞
−∞

f(x)e−irxdx

satis�es the conditions f̂(−r) = f̂(r), f̂ is holomorphic in the band |Im r| < δ+ 1/2

and f̂(r) = O(|r|−2−δ) as |r| → ∞ for some δ > 0. Then, the formula reads

∞∑
j=0

mj f̂(rj) =
∑

γ∈Hyp(Γ)

logN(δγ)

N(γ)1/2 −N(γ)−1/2
f(logN(γ))

+ (g − 1)

∫ ∞
−∞

f̂(r) r tanh(πr) dr. (2.1)

Here mj is the multiplicity of λj (j > 0), rj is the number determined by λj = 1
4

+r2
j

(rj > 0 if rj ∈ R and −irj > 0 otherwise), Hyp(Γ) (resp. Prim (Γ)) is the set of all
hyperbolic (resp. primitive) conjugacy classes in Γ, N(γ) is the square of the larger
eigenvalue of γ ∈ Hyp(Γ) and, for γ ∈ Hyp(Γ), δγ ∈ Prim (Γ) is the unique element
satisfying γ = δkγ for some k > 1.

Suppose Re s > 1/2 and Rew > r. Write t = s− 1/2. Let

f(x) :=
1√

π Γ(w + 1− r)

( x
2t

)w−r+1/2

Kw−r+1/2(tx),

where Γ(x) is the classical gamma function and Kν(x) is the K-Bessel function.
Then, taking this f as a test function of the trace formula (2.1) and noticing that
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f̂(r) = (r2 + t2)−w+r−1, we have

ζ∆Γ

(
w + 1− r, −s(1− s)

)
= Ir

(
w, t
)

+

+ (g − 1)
r−1∑
`=0

(
r − 1

`

)
t2(r−1−`)J (2`+1)(w, t), (2.2)

where

Ir(w, a) :=
∑

γ∈Hyp(Γ)

logN(δγ)

N(γ)1/2 −N(γ)−1/2
Ar(w, a; γ),

Ar(w, a; γ) :=
1√

π Γ(w − r + 1)

(
logN(γ)

2a

)w−r+1/2

Kw−r+1/2

(
a logN(γ)

)
and

J (m)(w, a) :=

∫ ∞
−∞

(x2 + a2)−w xm tanh(πx) dx.

One can show that both Ir(w, a) and J (m)(w, a) are continued meromorphically to
C as a function of w and are in particular holomorphic at w = 0. Hence, taking the
derivatives at w = 0 of the both hands side of (2.2), we have

Detr
(
∆Γ − s(1− s)

)
= φr(s)

g−1ZΓ,r(s), (2.3)

where

φr(s) : =
r−1∏
`=0

exp
(
− ∂

∂w
J (2`+1)(w, t)

∣∣∣
w=0

)(r−1
` )t2(r−1−`)

, (2.4)

ZΓ,r(s) : = exp
(
− ∂

∂w
Ir(w, t)

∣∣∣
w=0

)
. (2.5)

In the subsequence sections, we calculate the �gamma factor� φr(s) (Theorem 3.1)
and the �zeta factor� ZΓ,r(s) (Theorem 4.1), respectively. As a consequence, our
main result (Theorem 1.1) follows immediately from the equation (2.3).

� 3. Gamma factor

To evaluate φr(s), we here recall the Barnes multiple gamma functions. Let

ζn(w, z) :=
∑

m1,...,mn>0

1

(m1 + . . .+mn + z)w
, Rew > n,

be the Barnes multiple zeta function [2]. It is known that ζn(w, z) can be continued
meromorphically to C with possible simple poles at w = 1, 2, . . . , n. Then, the Barnes
multiple gamma function Γn(z) is de�ned by

Γn(z) := exp

(
∂

∂w
ζn(w, z)

∣∣∣
w=0

)
.
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Note that Γ1(z) = Γ(z)/
√

2π from the Lerch formula [6]

∂

∂w
ζ(w, z)

∣∣
w=0

= log
Γ(z)√

2π
.

One can evaluate the integral J (m)(w, a) by using the residue theorem and its
derivative at w = 0 in terms of (the logarithm of) the Barnes multiple gamma
function. Consequently, together with the formula (2.4), we have the following
expression of φr(s);

Theorem 3.1 Write t = s− 1/2. Then we have

φr(s) = exp

{
− (2r)!!

r2 (2r − 1)!!
t2r
}
·

2r∏
j=1

Γj(s)
αr,j(t),

where αr,j(t) is the even polynomial given by

αr,j(t) := 4
r−1∑

`=[ j−1
2

]

(
r − 1

`

)
(−1)` c2`+2,j

(
1

2

)
t2(r−1−`) .

Here [x] denotes the largest integer not exceeding x and cr,j(z) is the polynomial
de�ned by

(T + z)r−1 =
r∑
j=1

cr,j(z)

(
T + j − 1

j − 1

)
.

Example 3.2 Write t = s− 1/2. Then it holds that

φ1(s) = e−2t2Γ1(s)−2Γ2(s)4,

φ2(s) = e−
2
3
t4Γ1(s)−2t2+ 1

2 Γ2(s)4t2−13Γ3(s)36Γ4(s)−24,

φ3(s) = e−
16
45
t6Γ1(s)−

1
8

+t2−2t4Γ2(s)
121
4
−26t2+4t4Γ3(s)−330+72t2

× Γ4(s)1020−48t2Γ5(s)−1200Γ6(s)480.

Remark 3.3 The function φr(s) can be also expressed in terms of the Vign�eras
multiple gamma functions Gn(z) [12], see also [1] for the case n = 2, which are
characterized by a generalization of the Bohr-Mollerup theorem. We remark that
Γn(z) and Gn(z) are essentially equal (see, more precisely, [10]).

� 4. Zeta factor

We next evaluate ZΓ,r(s). To do that, we introduce aMilnor-Selberg zeta function

Z
(m)
Γ (s) of depth m by the following Euler product:

Z
(m)
Γ (s) :=

∏
P∈Prim (Γ)

∞∏
n=0

Hm

(
N(P )−s−n

)(logN(P ))−m+1

, Re s > 1. (4.1)
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Here Hm(z) := exp(−Lim(z)) with

Lim(z) :=
∞∑
k=1

zk

km

being the polylogarithm function. Notice that, since Li1(z) = − log (1− z), this gives
the Selberg zeta function

ZΓ(s) :=
∏

P∈Prim (Γ)

∞∏
n=0

(
1−N(P )−s−n

)
, Re s > 1.

We remark that, since

d

dz
Lim(z) =

1

z
Lim−1(z),

the Milnor-Selberg zeta functions Z
(m)
Γ (s) satisfy the following di�erential ladder

relation;

dm−1

dsm−1
logZ

(m)
Γ (s) = − dm−2

dsm−2
logZ

(m−1)
Γ (s) = . . . = (−1)m−1 logZΓ(s).

This shows that the Milnor-Selberg zeta function of depth m is essentially given by
the (m−1)-th iterated integrals of the logarithm of the Selberg zeta function ZΓ(s).
Therefore, since ZΓ(s) has zeros at s = −k for k = −1, 0, 1, 2, . . . and (1/2)± irj for
j = 1, 2, . . ., it is in general a multi-valued function.

Since the K-Bessel function Kν(x) is analytic with respect to the variable ν, one
can see that the functions Ar(w, a; γ) and hence Ir(w, a) are holomorphic at w = 0.
Moreover, using the asymptotic formulas

Kw−r+1/2(a logN(γ)) = K−r+1/2

(
a logN(γ)

)
+O(w),(

logN(γ)

2a

)w−r+1/2

=

(
logN(γ)

2a

)−r+1/2

+O(w),

1

Γ(w − r + 1)
= (−1)r−1 (r − 1)!w +O(w2)

as w → 0 together with the well-known formula, see, e. g., [3],

K−r+1/2(y) = Kr−1/2(y) =
( π

2y

)1/2

e−y
r−1∑
m=0

(2y)−m
(r +m− 1)!

m!(r −m− 1)!
,

we have

∂

∂w
Ir(w, a)

∣∣∣
w=0

= (−1)r−1

r−1∑
m=0

(
r − 1

m

)
(r +m− 1)!×

× (2a)r−1−m zΓ

(
a+

1

2
, r +m

)
, (4.2)
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where

zΓ(s,m) :=
∑

γ∈Hyp(Γ)

logN(δγ)

N(γ)1/2 −N(γ)−1/2
· N(γ)−s+1/2

(logN(γ))m
.

By a straightforward calculation, one can show that

logZ
(m)
Γ (s) = −zΓ(s,m).

Therefore, together with the formulas (2.5) and (4.2), we obtain the following

Theorem 4.1 Write t = s− 1/2. Then we have

ZΓ,r(s) =

(
r−1∏
m=0

Z
(r+m)
Γ (s)(

r−1
m )(r+m−1)!(2t)r−1−m

)(−1)r−1

, Re s > 1.

Example 4.2 Write t = s− 1
2
. Then it holds that

ZΓ,1(s) = Z
(1)
Γ (s) = ZΓ(s),

ZΓ,2(s) = Z
(2)
Γ (s)−2tZ

(3)
Γ (s)−2,

ZΓ,3(s) = Z
(3)
Γ (s)8t2Z

(4)
Γ (s)24tZ

(5)
Γ (s)24.

Remark 4.3 One can see that the function ZΓ,1(s) is an entire function because

the Selberg zeta function ZΓ(s) is (notice that ZΓ,1(s) = Z
(1)
Γ (s) = ZΓ(s)). However,

for r > 2, it has not been clari�ed whether ZΓ,r(s), which is written as a product of

Z
(m)
Γ (s), can be (analytically) continued to a single-valued function (recall that the

Milnor-Selberg zeta function Z
(m)
Γ (s) is in general a multi-valued function).
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