УДК 517.51

УСЛОВИЯ ПРАВИЛЬНОСТИ КВАЗИНОРМИРОВАННЫХ ПРОСТРАНСТВ

© И.В. Шрагин

Ключевые слова: ограниченное множество; квазинорма; правильное пространство; генфункция; пространство Муселяка—Орлича.

Рассматриваются квазинормированные пространства, порождаемые генфункциями. Для этих пространств получены необходимые и достаточные условия их правильности, т. е. равносильности двух понятий ограниченности множеств: в смысле метрики и в смысле топологии векторного пространства.

§1. Введение

Понятие правильного квазинормированного пространства (КНП) введено в [1], где приведены (без доказательств) некоторые условия правильности КНП, порождаемых генфункциями (в частности, пространств Муселяка-Орлича). В [2] дано полное изложение результатов из [1] и некоторых дополнительных результатов.

В настоящей работе получены необходимые и достаточные условия правильности указанных пространств и приведены примеры применения этих условий. Для удобства чтения излагаются также основные результаты из [2].

§2. Предварительные сведения

Пусть X - векторное пространство $(X \neq \{0\})$ над полем скаляров $\mathbb{K} = \mathbb{R}$ или \mathbb{C} . Всюду в дальнейшем α, δ, ϵ - положительные, а k, n - натуральные числа; через 0 обозначается нулевой элемент как в X , так и в \mathbb{K} .

О пределение 1. Функция $M: X \to [0, \infty]$ называется генфункцией при выполнении условий:

- (a) M(0) = 0;
- (b) $\forall (\lambda \in \mathbb{K}, x \in X) M(\lambda x) = M(|\lambda|x)$ (в частности, M(-x) = M(x));
- (c) $\forall (x, y \in X, a \in (0, 1)) M(ax + (1 a)y) \leq M(x) + M(y);$
- (d) $(\forall x \neq 0) \lim_{\alpha \to \infty} M(\alpha x) > \lim_{\alpha \to 0} M(\alpha x) = 0$.

Заметим, что из (a) и (c) (при y=0) вытекает неубывание функции M на каждом луче $\{\beta x: \beta \geqslant 0\}(x \neq 0)$, а значит - существование пределов в (d).

При данной генфункции M равенство

$$||x||_M := \inf\{a > 0 : M(a^{-1}x) \le a\}$$
 (1)

определяет ([3]) в X квазинорму (иначе, F-норму). Это значит ([4]), что $0 \leqslant ||x||_M < \infty$; $||x||_M = 0$ тогда и только тогда, когда x = 0; $||-x||_M = ||x||_M$; $||x+y||_M \leqslant ||x||_M + ||y||_M$; $(\forall \lambda \in \mathbb{K})||\lambda x||_M \to 0$ при $x \to 0$ (т. е. при $||x||_M \to 0$); $(\forall x \in X)\lambda x \to 0$ при $\lambda \to 0$. Отметим, что, как следует из (b), $||\lambda x||_M = ||\lambda|x||_M$.

Через X_M обозначим пространство X, наделенное квазинормой $||.||_M$. Ясно, что квазинорма $||.||_M$ порождает в X метрику d, где $d(x,y)=||x-y||_M$. Но так как в пространстве X_M линейные операции непрерывны ([3], Theorem 1.5), то оно является топологическим векторным пространством (ТВП). Поэтому к КНП X_M применимы два понятия ограниченности множества: в смысле метрики d (d-ограниченность) и в смысле ТВП (ТВ-ограниченность). Напомним, что множество A в ТВП называется B-ограниченным [5] при выполнении условия:

если
$$(\forall k)x_k \in A, \lambda_k \in \mathbb{K}$$
, причем $\lambda_k \to 0$, то $\lambda_k x_k \to 0$. (2)

Нетрудно показать, что в ситуации КНП X_M условие (2) равносильно условию:

$$\lim_{\lambda \to 0} \sup\{||\lambda x||_M : x \in A\} = 0,\tag{3}$$

т. е. $\lambda x \to 0$ при $\lambda \to 0$ равномерно по $x \in A$. Известно (см., например, [2]), что в произвольном КНП из ТВ-ограниченности множества вытекает его d-ограниченность. Докажем это утверждение для КНП X_M . Для этого нам потребуется

Лемма 1. Если $|\lambda| \leq 1$, то $(\forall x)||\lambda x||_M \geq |\lambda| ||x||_M$.

Д о к а з а т е л ь с т в о. Очевидно, можно считать, что $\lambda \neq 0$. Тогда если a>0 и $M(a^{-1}\lambda x)\leqslant a$, то $M(a^{-1}\lambda x)\leqslant a|\lambda|^{-1}$. Так что в силу (1)

$$||\lambda x||_{M} \ge \inf\{a > 0 : M(a^{-1}|\lambda|x) \le a|\lambda|^{-1}\} = |\lambda|\inf\{b > 0 : M(b^{-1}x) \le b\},$$

где $b=a|\lambda|^{-1}$. Тем самым лемма доказана. \square

Теорема 1. Если множество A в КНП X_M ТВ-ограничено, то оно u d-ограничено. Доказательство. Пусть $0<|\lambda|\leqslant 1$. Тогда в силу Леммы 1

$$(\forall x \in A)||x||_M \leqslant |\lambda|^{-1} \sup\{||\lambda x||_M : x \in A\}.$$

Так как множество A ТВ-ограничено, то в силу (3) $(\forall x \in A)||x||_M \leqslant |\lambda|^{-1}$ при достаточно малом λ , т. е. A d-ограничено. \square

О пределение 2. КНП называется npaвильным, если в нем всякое d-ограниченное множество является и ТВ-ограниченным, т. е. оба понятия ограниченности равносильны.

Очевидно, всякое нормированное пространство (это частный случай КНП) правильно. С другой стороны, так как ненулевые подпространства в ТВП не являются ТВ-ограниченными ([6], §1.29), то КНП, содержащее d-ограниченное подпространство E ($E \neq \{0\}$), не правильно. Примером такого пространства служит КНП, порожденное генфункцией $M: \mathbb{R} \to [0,1)$, где $M(x) = |x|(1+|x|)^{-1}$, так как в этом случае $\{x \in \mathbb{R}: ||x||_M < 1\} = \mathbb{R}$.

§3. Свойства генфункции, порождающей правильное КНП

Следующая теорема содержит необходимое условие правильности КНП X_M . Т е о р е м а 2. Если пространство X_M правильно, то

$$(\forall x \neq 0) \lim_{\alpha \to \infty} M(\alpha x) = \infty. \tag{4}$$

Доказательство. Предположим, что $a:=\lim_{\alpha\to\infty}M(\alpha x_0)<\infty$ при некотором $x_0\neq 0$, и рассмотрим подпространство $E:=\{\lambda x_0:\lambda\in\mathbb{K}\}$. Оно, как указанно выше, не является ТВ-ограниченным. С другой стороны,

$$(\forall x \in E) M(a^{-1}x) = M(a^{-1}|\lambda|x_0) \leqslant a,$$

так что $(\forall x \in E)||x||_M \leqslant a$, т. е. E d-ограничено, что противоречит правильности КНП $X_M.\square$

В §4 будет показано, что условие (4), вообще говоря, не достаточно для правильности КНП X_M , в отличие от следующего частного случая.

Пусть X - нормированное пространство с нормой |.| (обозначаемой так же, как и модуль в \mathbb{K}). Пусть, далее, ($\forall x \in X$) $M(x) := \Phi(|x|)$, где $\Phi: [0,\infty) \to [0,\infty]$ - неубывающая функция, для которой

$$\lim_{\alpha \to \infty} \Phi(\alpha) > \lim_{\alpha \to 0} \Phi(\alpha) = 0.$$

Очевидно, M является генфункцией, которую назовем *простейшей* генфункцией. Условие (4) для простейшей генфункции означает, что $\Phi(\alpha) \to \infty$ при $\alpha \to \infty$.

Далее нам потребуется критерий сходимости в КНП X_M ([3], Theorem 1.6):

$$\lim_{k\to\infty}||x_k||_M=0$$
 тогда и только тогда, когда $(\forall \alpha)\lim_{k\to\infty}M(\alpha x_k)=0.$ (5)

 ${
m T}$ е о р е м а 3. Если для простейшей генфункции M выполняется условие (4), то КНП X_M правильно.

Доказательство. Положим при r>0

$$B_r := \{ x \in X : ||x||_M < r \} \tag{6}$$

и покажем, что $b_r := \sup\{|x|: x \in B_r\} < \infty$. Действительно, в противном случае $\exists (x_n \in B_r, n=1,2,\ldots): |x_n| \to \infty$, откуда $M(r^{-1}x_n) = \Phi(r^{-1}|x_n|) \to \infty$, что противоречит неравенству: $(\forall n) M(r^{-1}x_n) \leqslant r$ (см. (1)).

Далее, пусть $(\forall k)x_k \in B_r, \lambda_k \in \mathbb{K}$ и $\lambda_k \to 0$. Тогда

$$(\forall \alpha) M(\alpha \lambda_k x_k) = \Phi(\alpha |\lambda_k| |x_k|) \leqslant \Phi(\alpha |\lambda_k| b_r) \to 0,$$

т.е., в силу (5), $\lambda_k x_k \to 0$.

Итак, любой шар $B_r \subset X_M$ ТВ-ограничен, так что КНП X_M правильно. \square

Таким образом, в силу Теорем 2 и 3, в случае простейшей генфункции M , условие (4) необходимо и достаточно для правильности КНП X_M .

С ледствие 1. Если $\dim X=1$, и генункция M удовлетворяет условию (4), то КНП X_M правильно.

Д о к а з а т е л ь с т в о. Пусть $e \in X, e \neq 0$. Тогда равенство $|x| := |\lambda|$, где $x = \lambda e$, определяет норму в X. Положим $\Phi(\beta) = M(\beta e), \beta \geqslant 0$, так что $(\forall x \in X) M(x) = \Phi(|x|)$, т.е. M — простейшая генфункция. Остается применить Теорему 3. \square

Неизвестно, верно ли утверждение Следствия 1, если $1 < \dim X < \infty$.

Вернемся к произвольной генфункции M. Очевидно, в определении правильности КНП X_M в качестве d-ограниченного множества можно рассматривать произвольный шар B_r (см. (6)).

 ${\bf T}$ е о р е м а 4. Пространство X_M правильно тогда и только тогда, когда при любом r>0

$$\lim_{\lambda \to 0} \sup \{ M(\lambda x) : x \in B_r \} = 0, \tag{7}$$

m.e. $M(\lambda x) \to 0$ при $\lambda \to 0$ равномерно по $x \in B_r$.

Доказательство. Пусть $\forall r>0$ имеет место (7), и пусть при произвольном r>0 ($\forall k)x_k\in B_r,\ \lambda_k\in\mathbb{K}$, причем $\lambda_k\to 0$. Тогда

$$(\forall \alpha) \ M(\alpha \lambda_k x_k) \leqslant \sup \{M(\alpha \lambda_k x) : x \in B_r\} \xrightarrow{l} 0,$$

так что $\lambda_k x_k \to 0$ (см.(5)). Это значит, что шар B_r ТВ-ограничен, т.е. КНП X_M правильно.

Предположим теперь, что при некотором r>0 условие (7) не выполняется. Тогда существует такое ϵ , что $(\forall k) \exists (x_k \in B_r, \lambda_k \in \mathbb{K}) : \lambda_k \to 0$, а $M(\lambda_k x_k) > \epsilon$, т.е. $\lambda_k x_k$ не стремится к нулю в X_M . Это значит, что шар B_r не TB-ограничен, т.е. КНП X_M не правильно. \square

Применим этот критерий правильности к некоторым классам генфункций.

- 1) Если генфункция M р-однородна на X при некотором p>0, т.е. $\forall (\alpha,x)M(\alpha x)=\alpha^pM(x)$, то КНП X_M правильно.
 - Д о к а з а т е л ь с т в о. Зафиксируем r > 0. Тогда $\forall (x \in B_r, \lambda \in \mathbb{K}) M(\lambda x) = (|\lambda|r)^p M(r^{-1}x) \leq |\lambda|^p r^{p+1}$, откуда следует (7). \square
- 2) Если генфункция M выпукла на X, то КНП X_M правильно.

Доказательство. Пусть r>0 и $|\lambda|\leqslant r^{-1}$. Тогда $\forall x\in B_r$, в силу выпуклости функции M, $M(\lambda x)\leqslant |\lambda|rM(r^{-1}x)\leqslant |\lambda|r^2$, откуда следует (7). \square

 Π р и м е р 1. Пусть $X=C[a,b], M(x)=\int\limits_a^b|x(t)|^pdt\ (p>0)$. Так как M является генфункцией, р-однородной на X, то КНП X_M правильно. Заметим, что данная генфункция не является простейшей (при норме $|x|=\max\{|x(t)|:t\in[a,b]\}$).

§4. Условия правильности секвенциального пространства Муселяка-Орлича

Пространство Муселяка-Орлича l_M порождается функцией $M: \mathbb{N} \times X \to [0,\infty]$, где $(\forall n) M(n,\cdot)$ является генфункцией на X. Такую функцию M будем также называть генфункцией.

Рассмотрим векторное пространство $X^{\mathbb{N}}$ последовательностей $\varphi: \mathbb{N} \to X$. Обозначим через Θ нулевой элемент в $X^{\mathbb{N}}$, т.е. $(\forall n)\Theta(n)=0$.

Положим

$$I_M(\varphi) = \sum_{n=1}^{\infty} M(n, \varphi(n)), \varphi \in X^{\mathbb{N}},$$

$$l_M = \{ \varphi \in X^{\mathbb{N}} : (\exists \alpha) I_M(\alpha \varphi) < \infty \}.$$

Нетрудно проверить, что l_M - ненулевое подпространство в $X^{\mathbb{N}}$, а функционал $I_M: l_M \to [0,\infty]$ является генфункцией. Следовательно, равенство

$$||\varphi||_M := \inf\{a > o : I_M(a^{-1}\varphi) \leqslant a\}$$

определяет квазинорму в l_M .

T е о р е м а 5. Если $KH\Pi \ l_M$ правильно, то

$$\forall (n, x \neq 0) \lim_{\alpha \to \infty} M(n, \alpha x) = \infty \tag{8}$$

(если M не зависит от n, то (8) совпадает с (4)).

Доказательство. Согласно Теореме 2

$$(\forall \varphi \in l_M \setminus \{\Theta\}) \lim_{\alpha \to \infty} I_M(\alpha \varphi) = \infty.$$

Возьмем $n_0 \in \mathbb{N}$ и $x_0 \neq 0$ и положим $\varphi(n_0) = x_0$, а $(\forall n \neq n_0)\varphi(n) = 0$. Тогда $\varphi \in l_M \setminus \{\Theta\}$, откуда $\lim_{\alpha \to \infty} M(n_0, \alpha x_0) = \lim_{\alpha \to \infty} I_M(\alpha \varphi) = \infty$.

Приведем примеры генфункций, показывающие, что условие (8) не достаточно, вообще говоря, для правильности КНП l_M (даже если $(\forall n)M(n,\cdot)$ является простейшей генфункцией).

П р и м е р 2. Пусть $X=\mathbb{R}, M(n,x)=\sqrt[n]{x}$, так что $(\forall n)M(n,\cdot)$ - простейшая генфункция, обладающая свойством (8).

Пусть $(\forall k)\varphi_k(k)=1$, а $(\forall n\neq k)\varphi_k(n)=0$. Тогда $(\forall k)I_M(\varphi_k)=1$, так что $||\varphi_k||_M=1$. В то же время $I_M(k^{-1}\varphi_k)=\sqrt[k]{k^{-1}}\xrightarrow[k]{}1$. Это значит, что сфера $\{\varphi\in l_M:||\varphi||_M=1\}$ не ТВ-ограничена, так что КНП l_M не правильно.

 Π р и м е р 3. Пусть $X = \mathbb{R}, M(0) = 0, M(x) = -(\ln|x|)^{-1}$ при $|x| \in (0,1)$ и $M(x) = \infty$ при $|x| \ge 1$, так что для простейшей генфункции M выполняется (4) и, следовательно, (8).

Пусть $(\forall k)\varphi_k(n)=e^{-k}$ при $n\leqslant k$ и $\varphi_k(n)=0$ при n>k. Тогда $(\forall k)$ $I_M(\varphi_k)=1$, так что $||\varphi_k||_M=1$. Кроме того, $(\forall k)I_M(e^{-k}\varphi_k)=1/2$. Отсюда следует, как и в Примере 2, что КНП l_M не правильно.

Из этих примеров также следует, что условие (4), вообще говоря, не достаточно для правильности КНП X_M . Действительно, пусть роли пространства X и генфункции $M: X \to [0,\infty]$ играют l_M и, соответственно, I_M . Так как в Примерах 2 и 3 ($\forall \varphi \neq \Theta$) $I_M(\alpha \varphi) \to \infty$ при $\alpha \to \infty$, то условие (4) (с заменой x на φ , а M на I_M) выполняется. В то же время КНП l_M в обоих случаях не правильно.

Заметим далее, что если $(\forall n)$ генфункция $M(n,\cdot)$ р-однородна на X(p>0) или выпукла на X, то таким же свойством обладает I_M на l_M . Следовательно, в этих ситуациях КНП l_M правильно.

Из Теоремы 4 вытекает следующий критерий правильности КНП $\,l_M\,.$

Пространство l_M правильно тогда и только тогда, когда $I_M(\lambda \varphi) \to 0$ при $\lambda \to 0$ равномерно по φ на каждом шаре $\mathcal{B}_r := \{ \varphi \in l_M : ||\varphi||_M < r \}$.

Применим этот критерий в следующей ситуации.

Т е о р е м а 6. Пусть X - нормированное пространство, и M -простейшая генфункция, m.e. $M(x) = \Phi(|x|)$ (см. §2). Тогда если $\Phi(\xi) \to \infty$ при $\xi \to \infty$ и $c := \sup\{\xi : \Phi(\xi) = 0\} > 0$, то КНП l_M правильно.

Доказательство. Зафиксируем r>0 . Если $\varphi\in\mathcal{B}_r$, то

$$I_M(r^{-1}\varphi) = \sum_{n=1}^{\infty} \Phi(r^{-1}|\varphi(n)|) \leqslant r,$$

так что

$$(\forall n)\Phi(r^{-1}|\varphi(n)|) \leqslant r.$$

Далее, так как $\Phi(\xi) \to \infty$ при $\xi \to \infty$, то $b := \sup\{\xi : \Phi(\xi) \leqslant r\} < \infty$. Следовательно, $(\forall n)|\varphi(n)| \leqslant br$. Кроме того, $\Phi(|\lambda|br) = 0$ при $|\lambda| < d := c(br)^{-1}$.

Следовательно, $(\forall \varphi \in \mathcal{B}_r)I_M(\lambda \varphi) = 0$ при $|\lambda| < d$. Таким образом, $I_M(\lambda \varphi) \to 0$ при $\lambda \to 0$ равномерно по $\varphi \in \mathcal{B}_r$. Значит, КНП l_M правильно. \square

З а м е ч а н и е 1. Было бы полезно найти критерий правильности пространства l_M в терминах самой генфункции M .

В заключение отметим, что в настоящей статье не рассмотрены условия правильности функциональных КНП L_M (см. [1] и [2]).

ЛИТЕРАТУРА

- 1. *Шрагин И.В.* Об ограниченности множеств в пространствах Муселяка-Орлича // Вестник Тамбовского университета. Сер. Естеств. и техн. нуки. 2011. Т. 16. Вып. 4. С. 1227—1228.
- 2. Shragin I.V. On the boundedness of sets in Musielak–Orlicz spaces // Comment. Math. 2013. V. 53. N 2. P. 405–412.
 - 3. $Musielak\ J.$ Orlicz spaces and modular spaces. Berlin: Springer, 1983.
 - 4. Иосида К. Функциональный анализ. М.: Мир, 1967.
- 5. $Kolmogoroff\ A.$ Zur Normierbarkeit eines allgemeinen topologischen linearen Raumes // Stud. Math. 1934. T.S. P. 29–33.
 - 6. Рудин У. Функциональный анализ. М.: Мир, 1975.

Поступила в редакцию 3 марта 2015 г.

Shragin I.V. RIGHTNESS CONDITIONS OF QUSINORMED SPACES

We consider the quasinormed spaces, which are defined with the help of gen-functions. For these spaces we estabilish the necessary and sufficient conditions of rightness, that is of equivalence of two notions of set boundedness: in the sense of metric and in the sense of topology of vector space.

Key words: bounded set; right quasinormed space; gen-function; Musielak-Orlicz space.

Шрагин Исаак Вениаминович, Пермский государственный национальный исследовательский университет, г. Пермь, Российская Федерация, кандидат физико-математических наук, доцент, e-mail: is.shragin@mail.ru

Shragin Isaak Veniaminovich, Perm state national research university, Russian Federation, Perm, Candidate of Physics and Mathematics, Associate Professor, e-mail: is.shragin@mail.ru