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USING THE SMITH FORM FOR THE EXACT MATRIX INVERSION
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We discuss the problem of constructing an effective algorithm for computing the inverse
matrix for an integer matrix. One of the way, for obtaining the inverse matrix, is based on
the matrix Smith form. Known probabilistic algorithm can find the Smith form with the
computational bit complexity which has cubic dependence of the matrix sizes. We propose
a deterministic extension of this approach to calculating the inverse matrix.
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Introduction

We discuss the problem of constructing an effective algorithm for the integer matrix inversing.

It is known that the inverse of an integer matrix and other problems of linear algebra over a
commutative domain are performed with the complexity of matrix multiplication. If you solve these
problems in integers using modular arithmetic, the complexity in the bit-operations increased by n
times. Where n - is the size of the matrix [1-5].

In recent years, have been actively develop probabilistic algorithms. The best probabalistic
algorithm for the integer matrix inversing was proposed by Arne Storiohanom [6]. This algorithm has
complexity 723(log(||A|| +log||A~||)) He proposed a probabilistic algorithm that with probability
at least 1/2 computes the inverse matrix for the non-singular integral matrix A size n timesn and
uses

~ n®(log||Al| + log|[A™|])

bit operations. Here ||A||=max; ;|A;;| is the biggest coeflicient of the matrix A , symbol sim is
a missing factor

a log(n)"(log log(]|Al]))¢,

and the numbers a, b, ¢ — is some positive constants.
The best algorithm, which was known before, has a bit complexity

~ " og| A

Random matrix with a high probability is well-conditioned and has ||A|| ~||A™!||. However,
it may be that ||[A~Y||~nl||A|| for ill-conditioned matrix, for example, when det(A)=1. Thus,
Storiohana algorithm allows us to calculate the inverse matrix faster for well-conditioned matrix
(~n3log||A||). And this algorithm does not improve in the case of ill-conditioned matrix
(~nlog||All).

The central idea of this algorithm is to calculate the Smith form of the initial matrix as a sum
of matrices of rank one.

Let r=rank(A)

snf(A) = S = PAQ = Diag(s1, $2, .-, $r, 0,0, ..., 0)
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— is the Smith form of matrix A, P and @ — are unimodular matrices and V; s;|s;+1 . Then the
expansion of Smith form can be written as follows

A= (51)017’1 + (82)627“2 =+ ...+ (Sr)cr’l“r. (1)

here ¢;r;, i=1,2,..,r is an outer product of the column ¢; by row ;.

The existence of such an expansion follows directly from the following matrix identity.

Let s1=gcd(A), w; and h; —is a row and column, satisfying the equation w;Ah; =s; and
let 7y =w1A/s1, c1=Ahy/s1. Then we have the following matrix identity:

1 w1 0 O 1 —T1 o S1 0 (2)
—c1 I, —cw 0 A hi In—hir1| | 0 A—sier |

On the left side of equality both factors are the unimodular matrices. Hence the matrix A and
diag(s;, A —sic1r1) have the same Smith form. And we can easy to find them using this recursive
identity: first, the matrix A, then the matrix Ay =A — s1¢i1r1, and so on.

As was shown in [1] for r=n the algorithm requires a ~n3(log||A||) bit operations. We must
each time taking random vector h;, then the vector w; we must find using the extended Euclidean
algorithm, calculating ged(A;h;) . The equality ged(A;h;) = ged(A;) will be true with very high
probability.

The following is an algorithm for computing the inverse matrix, which has roughly the same
complexity in operations on integer coefficients. Its bit complexity we have to evaluate in the future.

Computation of the inverse matrix

Suppose we have already constructed the decomposition of Smith form of the matrix A and
calculated all the components s;, w;, hi,7i,¢; (i=1,2,..,r) in decomposition (1).

We will introduce other notations. We further denote by w;, r;, h;, ¢; matrix of size n xn, all of
whose elements are zero except for one ¢-th row, which is equal to w; or r;, or one 7 th column,
which equals h; or ¢;, respectively. In the new notation Smith decomposition will be recorded in
the same manner as in (1).

THEORE M. Let A= (s1)cir1+ (s2)cora + ... + (8¢)erry — be Smith decomposition for
matric A, of size nxn, r=rank(A), ri=wiA/s1, ¢1=Ahi/s1. Let S, — be n xn matric,
which is different from zero only one diagonal element in the i th row, which is equal s;, and let
Si=S1+S54+.. 45 (1<i<r) and Sp=0.

Let Fi=1,—cw;, Gi=1,—h;r;, Aj= (Si)Ci’l"i +...+ (Sr)CrT‘r ,

I, —r;

| mavi= [ 2] =tm

Then the following matriz identities hold for any integer k, 1 lek le bfr(A):k, 1<k<r(A):

I, w;

Ui - |: —C; Fl

In Wi Sk—l 0 In —Tk . Sk 0 (3)
—Ck Fk 0 Ak hk Gk o 0 Ak+1 ’
L, W M, -R
UkUk_l---Ulz[_C’“k F:],WQ---VF{H: G;f]? (4)

W, AH, = S, (5)

i which the the notation used

Fp=F.Fp_1---F, Gp=G1Ga -Gy
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Wi =wi +weF1 + .. +wpFi_1, Cp=cp + Fp_1(cp—1 + Fp—2(cp—2+ ..+ Fi(c1)..), Hy=h1+
+ Giho+ ..+ Gp_1hy, Rp=(..(r)G1+ .. +14—2Gr—2) + 11-1)Gr—1 + 1%, Ly =1, — (w2Cy +
+ w3Coy+ .. + wka_l) , Mp=1, — (thg + Rohs + .. -f-Rk_lhk)

P R O O F. The identity (2), which is used in the first step of calculating Smith decomposition,
can be written in the form in which it will look for the step 7. At the same time, we extend it zero
and unit elements. And besides, we will add a diagonal matrix S;—; and S;=S;-1+S] to the left
and the right side. Here, obviously, the identity is retained since ¢;S;—1 =0. As a result, come to
identity (3). We prove (4) by induction. For k = 1 the assertion is obvious. Suppose it is true for
some k>1. Let us prove the following equality

[ L, win ] [ Ly, Wy ] _ [ Lit1 Wi
—Cht1 Fra -Cr  Fy
Matrices Li and Wj differ from the unit and zero matrices, respectively, only in the first k
rows therefore cpi1Ly=cgy1 and cxyr1 Wi =0. This implies that: Fypy1=Fr1Fk, Cri1=cri1+
+ Fr1Cr, W1 = Wit wp 1 Fr, L =L — wg1 Cy.
The second of the identities (4) can be proved similarly.

To prove the identity (5) applies to the original matrix A k times the equation (3) and use

(4). A result we get

L. W, 0 O M, —-R; B Sk 0
—-C,. Fy 0 A H, G S0 Apn
When k= bfr from this equation, we obtain (5).

THE ORE M. Let all the conditions of Theorem 1 are satisfied, and rankA=n . Then there
is a factorization for the the inverse matriz:

A7l =H,5"'W,. (6)

Here
Hy =hi + Grhe + .. + Gi_1hg, G = G1G2 - G, Gi = I, — hiry, (7)
Wi = w1 +woF1 + .. +wipFpq, ¥y = FpFy 1 - F1, Fy =1, — cow;. (8)

The proof is reduced to the inversion of equality (5).
Complexity.  Let us find a product

(In, — har1)(Ip, — hora) - - (I, — hp—17n—1)
G1Go = (I, — hir1)(In — hare) = (I — h1(r1 — piar2) — hara)
G1G2G3 = (I, — hi(r1 — qira) — hare) (I, — hars) =
(In — hi(r1 — qr2) — harg) — (hsrs — hi(r1 — qir2)hrs — haorghsrs) =

I, — hi(ry — paara — (w13 — pagpes)rs) — ho(re — posrs) — hars =
I, — (h1g1G2--gn—1 + h2q2q3..qn—1 — h3q3qa..qn—1... + hp—1)rn—1

¢i = rihit1
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—is the value of the element (i, i + 1) in the matrix (i = 1..n-2) To calculate the matrix H,, need
to calculate each of its columns in accordance with (7). Column number & is equal to

G1Gy -+ - Gi_1hg.
We calculate it from right to left. We calculate the last product:
Gr1hy = (In — hg—1mp—1)hge = hye — hye—1(T—1hg)

To do this, the result of the scalar product of vectors (rip_1hj) multiply by a column vector hg_q
and subtract from column hjg_; . In total, we performed 2n multiplications and additions as well.
Continuing to go on like this, we calculate the entire column with the number k using 2(k—1)n
operations. Since the number of columns is equal to n, it would take n3 of operations for all
calculations.

Similarly we can calculate the matrix W, .

Thus, if we know Smith decomposition of matrix A then the inverse matrix factorization can
be obtained for n3 of operations over coefficients.

The question of the bit complexity of such an algorithm is still open.
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AJId TOYHOI'O MATPUUYHOI'O OBPAIITEHIM A
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Obcyxxmaercs mpobiaema mocTpoeHus 3MMOEKTUBHOIO AJrOPUTMa OOPAIIEHUs TEJIOIUCTICH-
woit marpurpl. OUH U3 CcOCOOOB BHIYUCIEHUS OOPATHON MATPUILI OMUPAETCs Ha MpeIBa-
puresbHOE Bhruncsenne Marpuiibl Cvura. MI3BecTen BEpOSTHOCTHBIHM aJrOPUTM BBITHCICHUS
MaTpuibl CMuTa ¢ KyOH9IecKoil 3aBUCHMOCTBIO YHCIa OUT-0Iepannii OT pa3MepoB MaTPHIIBL.
[Ipemraraercst HEKOTOPOE JIETEPMUHUCTCKOE ITPOJIOJIZKEHIEM STOTO IIOIX0/Ia JIJIsl BHIYUCICHHS
0OpaTHOI MaTPUILHI.

Karouesvie crosa: hopma CMuTa; CHMBOIBHBIE BBIYUC/ICHUS; OOPAIIEHIE MATPHUIL
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