Меню: Главная :: К журналу :: switch to Russian :: switch to English
Вы здесь: Все журналы и выпуски→ Журнал→ Выпуск→ Статья

EXISTENCE, UNIQUENESS AND CONTINUOUS DEPENDENCE ON CONTROL OF SOLUTIONS TO GENERALIZED NEURAL FIELD EQUATIONS

Аннотация

Were considered nonlinear integral equations involving essentially bounded control. Were obtained conditions for existence and uniqueness of solution to this equation and continuous dependence of this solution on control.

Ключевые слова

nonlinear integral equations; neural field equations; control; wellposedness

Полный текст статьи

Скачать

УДК

517.988.6, 517.968.48, 51-76

Страницы

9-16

Список литературы

1. Vainikko G.M. Regular convergence of operators and approximate solution of equations // Science and Technics Totals, Journal of Soviet Mathematics. 1981. V. 6. P. 675-705. 2. Azbelev N.V., Maksimov V.P., Rakhmatullina L.F. Introduction to the Theory of Functional Differential Equations: Methods and Applications. New York: Hindawi Publishing Corporation, 2007. 3. Burlakov E., Zliukovskiy E., Ponosov A., Wyller J. Existence, uniqueness and continuous dependence on parameters of solutions to neural field equations with delay // Submitted to Journal of Abstract Differential Equations and Applications. 4. Amari S. Dynamics of Pattern Formation in Lateral-Inhibition Type Neural Fields // Biol. Cybernetics. 1977. V. 27. P. 77-87. 5. Coombes S. Waves, bumps, and patterns in neural field theories // Biol. Cybern. 2005. V. 93. P. 91-108. 6. Blomquist P., Wyller J., Einevoll G.T. Localized activity patterns in two-population neuronal networks // Physica D. 2005. V. 206. P. 180-212. 7. Faye G., Faugeras О. Some theoretical and numerical results for delayed neural field equations // Physica D. 2010. V. 239. P. 561-578. 8. Malyutina E., Wyller J., Ponosov A. Two bump solutions of a homogenized Wilson - Cowan model with periodic microstructure // Physica D. 2014. V. 271. P. 19-31. 9. Tass P.A. A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations // Biological cybernetics. 2003. V. 89.P. 81-88. 10. Suffczynski P., Kalitzin S., Lopes Da Silva F.H. Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network // Neuroscience. 2004. V. 126. P. 467-484. 11. Kramer M.A., Lopour В.A., Kirsch H.E., Szeri A.J. Bifurcation control of a seizing human cortex // Physical Review E. 2006. V. 73. P. 41928. 12. Schiff S.J. Towards model-based control of Parkinson's disease // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010. V. 368. P. 2269-2308. 13. Ruths J., Taylor P., Dauwels J. Optimal Control of an Epileptic Neural Population Model, Proceedings of the International Federation of Automatic Control. Cape Town, 2014. 14. Tikhonov A.N. On functional equations of Volterra type and their applications to some problems of mathematical physics // Bull. MGU, Sect. A. 1938. V. 8. P. 1-25. 15. Zhukovskiy E.S. Continuous dependence on parameters of solutions to Volterra's equations // Sbornik: Mathematics. 2006. V. 10. P. 1435-1457.

Поступила в редакцию

2014-11-21

Название раздела в выпуске

Научные статьи

Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.