Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article

ACCUMULATION OF ELECTROLYTIC HYDROGEN WITH MULTIWALLED CARBON

Annotation

Accumulation of electrolytic hydrogen with multiwalled carbon nanotubes (MWCNTs) deposited on steel membrane and encapsulated by electrolytic iron layer with 10 nm thickness has been studied in 5 M KOH solution. Study was conducted by the electrochemical method, cyclic voltammetry and spectroscopy of electrochemical impedance. The weight percent of hydrogen storage in MWCNTs varies in the range of 4.5...5.6 % according to the electrochemical diffusion method. These results are qualitatively confirmed by the electrochemical impedance data.

Keywords

nanotubes; electrolytic hydrogen; accumulation; membrane; diffusion; voltammetry; impedance

Full-text in one file

Download

UDC

541.13:544.3.031

Pages

381-387

References

1. Iijima S. Helical microtubules of grafitic carbon // Nature. 1991. V. 354. P. 56-58. 2. Cygankova L.E., Gladysheva I.E., Alehina O.V., Zvereva A.A. Ka-todnoe vydelenie vodoroda i ego pogloshhenie uglerodnymi nano-trubkami, modificirujushhimi pressovannye mikrografitovye katody // Vestnik Tambovskogo universiteta. Serija Estestvennye i tehnicheskie nauki. Tambov, 2011. T. 16. Vyp. 3. S. 855-859. 3. Cygankova L.E., Vigdorovich V.I., Zvereva A.A. Sostojanie poverh-nosti uglerodnyh materialov i akukumulirovanie vodoroda mno-gostennymi nanotrubkami na ih osnove // Fizikohimija poverh-nosti i zashhita materialov. 2013. T. 49. № 6. S. 614-622. 4. Grimes C.A., Dickey E.C.,Mungle C. et al. // J. Appl. Phys.2001. V. 90. № 8. P. 4134-4137. 5. Pan W., Zhang X., Li S., Wu D., Mao Z. Measuring hydrogen storage capacity of carbon nanotubes by high-pressure microbalance // Int. J. Hydrogen Energy. 2005. V. 30. P. 719-722. 6. Zhou L., Zhou Y., Sun Y. Studies on the mechanism and capacity of hydrogen uptake by physisorption-based materials // Int. J. Hydrogen Energy. 2006. V. 31. P. 259-264. 7. Dillon A.C., Jones K.M., Bekkedahl T.A., Kiang C.N., Bethune D.S., Heben M.J. Storage of hydrogen in single-walled carbon nanotubes // Nature. 1997. V. 386. № 27. P. 377-379. 8. Ye Y., Ahn C.C., Witham C., Fultz B., Liu J., Rinzler A.G. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes // Appl. Phys. Lett. 1999. V. 74. № 16. P. 2307-2309. 9. Liu C., Fan Y.Y., Liu M., Cong H.T., Cheng H.M., Dresselhaus M.S. Hydrogen storage in single-walled carbon nanotubes at room tempera-ture // Science. 1999. V. 286. P. 1127-1129. 10. Nutzenadel C., Zuttel A., Chartouni D., Schlapbach L. Electrochemical storage of hydrogen in nanotube materials // Electrochem. Solid-State Lett. 1999. V. 2. P. 30-32. 11. Vix-Guterl C., Frackowiak E., Jurewicz K., Friebe M., Parmentier J., Beguin F. Electrochemical energy storage in ordered porous carbon materials // Carbon. 2005. V. 43. P. 1293-1302. 12. Zhang H., Fu X., Chen Y., Yi S., Li S., Zhu Y. The electrochemical hydrogen storage of multi-walled carbon nanotubes synthesized by chemical vapor deposition using a lanthanum nickel hydrogen storage alloy as catalyst // Physica. 2004. V. B 352. P. 66-72. 13. Chen X., Zhang Y., Gao X.P., Pan G.L., Jiang X.Y., Qu J.Q. Electro-chemical hydrogen storage of carbon nanotubes and carbon nanofibers // Int. J. Hydrogen Energy. 2004. V. 29. P. 743-748. 14. Qin X., Gao X.P., Liu H., Yuan H.T., Yan D.Y., Gong W.L. Electro-chemical hydrogen storage of multiwalled carbon nanotubes // Electrochem Solid-State Lett. 2000. V. 3. P. 532-535. 15. Solodkova L.N., Ljahov B.F., Lipson A.G., Civadze A.Ju. Jelektro-sorbcija vodoroda v odnostennyh uglerodnyh nanotrubkah, inkap-sulirovannyh palladiem // Fizikohimija poverhnosti i zashhita materialov. 2010. T. 46. № 5. S. 450-453. 16. Tkachev A.G. Uglerodnyj nanomaterial «Taunit» – struktura, proizvodstvo i primenenie // Perspektivnye materialy. 2007. № 3. S. 5-9. 17. Devanathan M.A.V., Stachurski Z. // Proc. Roy. Soc. 1962. V. 270A. № 1340. P. 90. 18. Kardash N.V., Batrakov V.V. Metodika opredelenija vodoroda, diffundirujushhego cherez stal'nuju membranu // Zashhita metallov. 1995. T. 31. № 4. S. 441-444. 19. Cygankova L.E., Vigdorovich V.I., Zvereva A.A. Costojanie poverh-nosti uglerodnyh materialov i akkumulirovanie vodoroda mno-gostennymi nanotrubkami na ih osnove // Fizikohimija poverh-nosti i zashhita materialov. 2013. T. 49. № 6. S. 614-622. 20. Lim C., Pyun S.-I. Theoretical approach to Faradaic admittance of hydrogen absorption reaction on metal membrane electrode // Electro-chim. Acta. 1993. V. 38. № 18. R. 2645-2652. 21. Lasia A. Applications of electrochemical impedance spectroscopy to hydrogen adsorption, evolution and absorption into metals // Modern Aspects of Electrochemistry. B.E. Conway and R. White, Edts. N. Y.: Kluwer Academic/Plenum Publishers, 2002. V. 35. P. 1-49. 22. Gabrielli C., Grand P.P., Lasia A., Perrot H. Investigation of hydrogen adsorption-absorption into thin palladium films. I. Theory // J. Electrochem. Soc. 2004. V. 151. № 11. R. A1925-A1936. 23. Bockris J. O'M., McBreen J., Nanis L. The hydrogen evolution kinetics and hydrogen entry into -iron // J. Electrochem. Soc. 1965. V. 112. № 10. R. 1025-1031. 24. Harrington D.A., Conway B.E. AC impedance of Faradaic reactions involving electrosorbed intermediates. I. Kinetic theory // Electrochim. Acta. 1987. V. 32. № 12. R. 1703-1712. 25. Dull D.L., Nobe Ken. Effect of thioureas and triazoles on hydrogen penetration rates in iron // Corrosion (USA). 1979. V. 35. № 12. P. 535-540. 26. Saito Y., Nobe Ken. Effect of anions and organic corrosion inhibitors on the rate of hydrogen penetration of iron // Corrosion (USA). 1980. V. 36. № 4. P. 178-182. 27. Zakroczymski T. Permeability of iron to hydrogen cathodically generated in 0.1 M NaOH // Scr. Met. 1985. V. 19. № 4. P. 521-524. 28. Diard J.-P., Montella C. Diffusion-trapping impedance under restricted linear diffusion conditions // J. Electroanal. Chem. 2003. V. 557. R. 19-36. 29. Bόbics L., Sziráki L., Láng G.G. The impedance related to the electro-chemical hydrogen insertion into WO3 films – On the applicability of the diffusion-trapping model // Electrochem. Commun. 2008. V. 10. R. 283-287. 30. McNabb A., Foster P.K. A new analysis of the diffusion of hydrogen in iron and ferritic steels // Trans. Met. Soc. AIME. 1963. V. 227. P. 618-627.

Received

2015-03-20

Section of issue

Chemistry

Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.