Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article



Accumulation of electrolytic hydrogen with multiwalled carbon nanotubes (MWCNTs) deposited on steel membrane and encapsulated by electrolytic iron layer with 10 nm thickness has been studied in 5 M KOH solution. Study was conducted by the electrochemical method, cyclic voltammetry and spectroscopy of electrochemical impedance. The weight percent of hydrogen storage in MWCNTs varies in the range of 4.5...5.6 % according to the electrochemical diffusion method. These results are qualitatively confirmed by the electrochemical impedance data.


nanotubes; electrolytic hydrogen; accumulation; membrane; diffusion; voltammetry; impedance

Full-text in one file







1. Iijima S. Helical microtubules of grafitic carbon // Nature. 1991. V. 354. P. 56-58. 2. Cygankova L.E., Gladysheva I.E., Alehina O.V., Zvereva A.A. Ka-todnoe vydelenie vodoroda i ego pogloshhenie uglerodnymi nano-trubkami, modificirujushhimi pressovannye mikrografitovye katody // Vestnik Tambovskogo universiteta. Serija Estestvennye i tehnicheskie nauki. Tambov, 2011. T. 16. Vyp. 3. S. 855-859. 3. Cygankova L.E., Vigdorovich V.I., Zvereva A.A. Sostojanie poverh-nosti uglerodnyh materialov i akukumulirovanie vodoroda mno-gostennymi nanotrubkami na ih osnove // Fizikohimija poverh-nosti i zashhita materialov. 2013. T. 49. № 6. S. 614-622. 4. Grimes C.A., Dickey E.C.,Mungle C. et al. // J. Appl. Phys.2001. V. 90. № 8. P. 4134-4137. 5. Pan W., Zhang X., Li S., Wu D., Mao Z. Measuring hydrogen storage capacity of carbon nanotubes by high-pressure microbalance // Int. J. Hydrogen Energy. 2005. V. 30. P. 719-722. 6. Zhou L., Zhou Y., Sun Y. Studies on the mechanism and capacity of hydrogen uptake by physisorption-based materials // Int. J. Hydrogen Energy. 2006. V. 31. P. 259-264. 7. Dillon A.C., Jones K.M., Bekkedahl T.A., Kiang C.N., Bethune D.S., Heben M.J. Storage of hydrogen in single-walled carbon nanotubes // Nature. 1997. V. 386. № 27. P. 377-379. 8. Ye Y., Ahn C.C., Witham C., Fultz B., Liu J., Rinzler A.G. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes // Appl. Phys. Lett. 1999. V. 74. № 16. P. 2307-2309. 9. Liu C., Fan Y.Y., Liu M., Cong H.T., Cheng H.M., Dresselhaus M.S. Hydrogen storage in single-walled carbon nanotubes at room tempera-ture // Science. 1999. V. 286. P. 1127-1129. 10. Nutzenadel C., Zuttel A., Chartouni D., Schlapbach L. Electrochemical storage of hydrogen in nanotube materials // Electrochem. Solid-State Lett. 1999. V. 2. P. 30-32. 11. Vix-Guterl C., Frackowiak E., Jurewicz K., Friebe M., Parmentier J., Beguin F. Electrochemical energy storage in ordered porous carbon materials // Carbon. 2005. V. 43. P. 1293-1302. 12. Zhang H., Fu X., Chen Y., Yi S., Li S., Zhu Y. The electrochemical hydrogen storage of multi-walled carbon nanotubes synthesized by chemical vapor deposition using a lanthanum nickel hydrogen storage alloy as catalyst // Physica. 2004. V. B 352. P. 66-72. 13. Chen X., Zhang Y., Gao X.P., Pan G.L., Jiang X.Y., Qu J.Q. Electro-chemical hydrogen storage of carbon nanotubes and carbon nanofibers // Int. J. Hydrogen Energy. 2004. V. 29. P. 743-748. 14. Qin X., Gao X.P., Liu H., Yuan H.T., Yan D.Y., Gong W.L. Electro-chemical hydrogen storage of multiwalled carbon nanotubes // Electrochem Solid-State Lett. 2000. V. 3. P. 532-535. 15. Solodkova L.N., Ljahov B.F., Lipson A.G., Civadze A.Ju. Jelektro-sorbcija vodoroda v odnostennyh uglerodnyh nanotrubkah, inkap-sulirovannyh palladiem // Fizikohimija poverhnosti i zashhita materialov. 2010. T. 46. № 5. S. 450-453. 16. Tkachev A.G. Uglerodnyj nanomaterial «Taunit» – struktura, proizvodstvo i primenenie // Perspektivnye materialy. 2007. № 3. S. 5-9. 17. Devanathan M.A.V., Stachurski Z. // Proc. Roy. Soc. 1962. V. 270A. № 1340. P. 90. 18. Kardash N.V., Batrakov V.V. Metodika opredelenija vodoroda, diffundirujushhego cherez stal'nuju membranu // Zashhita metallov. 1995. T. 31. № 4. S. 441-444. 19. Cygankova L.E., Vigdorovich V.I., Zvereva A.A. Costojanie poverh-nosti uglerodnyh materialov i akkumulirovanie vodoroda mno-gostennymi nanotrubkami na ih osnove // Fizikohimija poverh-nosti i zashhita materialov. 2013. T. 49. № 6. S. 614-622. 20. Lim C., Pyun S.-I. Theoretical approach to Faradaic admittance of hydrogen absorption reaction on metal membrane electrode // Electro-chim. Acta. 1993. V. 38. № 18. R. 2645-2652. 21. Lasia A. Applications of electrochemical impedance spectroscopy to hydrogen adsorption, evolution and absorption into metals // Modern Aspects of Electrochemistry. B.E. Conway and R. White, Edts. N. Y.: Kluwer Academic/Plenum Publishers, 2002. V. 35. P. 1-49. 22. Gabrielli C., Grand P.P., Lasia A., Perrot H. Investigation of hydrogen adsorption-absorption into thin palladium films. I. Theory // J. Electrochem. Soc. 2004. V. 151. № 11. R. A1925-A1936. 23. Bockris J. O'M., McBreen J., Nanis L. The hydrogen evolution kinetics and hydrogen entry into -iron // J. Electrochem. Soc. 1965. V. 112. № 10. R. 1025-1031. 24. Harrington D.A., Conway B.E. AC impedance of Faradaic reactions involving electrosorbed intermediates. I. Kinetic theory // Electrochim. Acta. 1987. V. 32. № 12. R. 1703-1712. 25. Dull D.L., Nobe Ken. Effect of thioureas and triazoles on hydrogen penetration rates in iron // Corrosion (USA). 1979. V. 35. № 12. P. 535-540. 26. Saito Y., Nobe Ken. Effect of anions and organic corrosion inhibitors on the rate of hydrogen penetration of iron // Corrosion (USA). 1980. V. 36. № 4. P. 178-182. 27. Zakroczymski T. Permeability of iron to hydrogen cathodically generated in 0.1 M NaOH // Scr. Met. 1985. V. 19. № 4. P. 521-524. 28. Diard J.-P., Montella C. Diffusion-trapping impedance under restricted linear diffusion conditions // J. Electroanal. Chem. 2003. V. 557. R. 19-36. 29. Bόbics L., Sziráki L., Láng G.G. The impedance related to the electro-chemical hydrogen insertion into WO3 films – On the applicability of the diffusion-trapping model // Electrochem. Commun. 2008. V. 10. R. 283-287. 30. McNabb A., Foster P.K. A new analysis of the diffusion of hydrogen in iron and ferritic steels // Trans. Met. Soc. AIME. 1963. V. 227. P. 618-627.



Section of issue


Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.