Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article

MATHEMATICAL MODEL OF DIRTYING OCEANIC WATERS

Annotation

A mathematical model describing the dirtying of ocean waters and ocean surface from sources located on the bottom, proposed and implemented in this paper. Oil dirtying of ocean waters have acquired looming, which confirms space monitoring. We need to develop a system of space monitoring such processes and look for technological ways of mitigation. Oil dirtying can cause significant violations of gas and water exchange between the hydrosphere and atmosphere. Mixing with water, oil forms an emulsion of two types: “oil in water” and “water-in-oil” that can be stored on the surface, transported by currents, beaching and settle to the bottom. Such pollution adversely affects the ocean plankton. The mathematical model is based on the diffusion equation, which takes into account the movement of particles from the bottom and transverse diffusion. The solution of the diffusion equation, expressed in terms of the probability integral. The initial condition for the diffusion equation is presented in the form of two-dimensional Heaviside function. This model allows us to describe the distribution of impurity particles as throughout the water column and at the surface of the ocean. Impurity is distributed on the surface of the ocean in the form of spots. Form spots and their interaction depends on the diffusion coefficient. Graphics for the shape of the spots at different values of the diffusion coefficient were presented. This mathematical model reflects some aspects of the real process of impurity propagation in the ocean.

Keywords

mathematical modeling; diffusion equation; dirtying of oceanic waters

Full-text in one file

Download

UDC

517.95:656.15

Pages

475-479

References

1. Vladimirov A.M., Ljahii Ju.I., Matveev L.T., Orlov V.G. Ohrana okruzhajushhej sredy. L.: Gidrometeoizdat, 1991. 424 s. 2. Protasov V.F., Molchanov A.V. Jekologija, zdorov'e i prirodopol'zovanie v Rossii. M.: Finansy i statistika, 1995. 528 s. 3. Rezanov I.A. Velikie katastrofy v istorii Zemli. M.: Nauka, 1980. 176 s. 4. Bogdanov Ju.A. Jekspedicii k «chernym kuril'shhikam» // Zemlja i Vselennaja. 1991. № 2. S. 3-10. 5. Dudoladova M.I., Starkov V.N. Issledovanie modeli Stila dinamiki chislennosti morskogo planktona // Tezisy dokladov Vserossijskoj konferencii, posvjashhennoj 80-letiju V.I. Zubova SPb.: VVM, 2010. S. 279-280. 6. Zajcev Ju.P. Zhizn' morskoj poverhnosti. Kiev: Naukova dumka, 1974. 112 s. 7. Konstantinov A.S. Obshhaja gidrobiologija. Izd. 4-e pererab. i dopoln. M.: Vysshaja shkola, 1986. 472 s. 8. Mironov O.G. Vzaimodejstvie morskih organizmov s neftjanymi uglevodorodami. L.: Gidrometeoizdat, 1985. 128 s. 9. Grigor'ev Al.A., Kondrat'ev K.Ja. Jekodinamika i geopolitika. T. 2. Jekologicheskie katastrofy. SPb.: NIC jekologicheskoj bez-opasnosti RAN, 2001. 687 s. 10. Izrajel' Ju.A., Cyban' A.V. Antropogennaja jekologija okeana. M.: Nauka, 2009. 520 s. 11. Moiseev P.A. Biologicheskie resursy Mirovogo okeana. M.: Agro-promizdat, 1989. 368 s. 12. Patin S.A. Vlijanie zagrjaznenija na biologicheskie resursy i produktivnost' Mirovogo okeana. M.: Pishhevaja promyshlennost', 1979. 304 s. 13. Grigor'ev A.A. Antropogennye vozdejstvija na prirodnuju sredu po nabljudenijam iz kosmosa. L.: Nauka. 1985. 240 s. 14. Kochergin V.P. Teorija i metody rascheta okeanicheskih techenij. M.: Nauka, 1978. 128 s. 15. Potapov D.K. Matematicheskaja model' otryvnyh techenij neszhi-maemoj zhidkosti // Izv. RAEN. Ser. MMMIU. 2004. T. 8. № 3-4. S. 163-170. 16. Potapov D.K. O reshenijah zadachi Gol'dshtika // Sib. zhurn. vy-chisl. matem. 2012. T. 15. № 4. S. 409-415. 17. Dudoladova M.I., Starkov V.N. Matematicheskaja model' zagrjazne-nija verhnego sloja okeana // Processy upravlenija i ustojchivost': trudy 40 Mezhdunar. nauch. konf. aspirantov i studentov / pod red. N.V. Smirnova, T.E. Smirnovoj. SPb.: Izd-vo S.-Peterb. un-ta, 2009. S. 155-159. 18. Starkov V.N. Postanovka zadachi o vlijanii termicheskoj konvek-cii na pole solenosti v pripoverhnostnom sloe okeana // Mate-maticheskoe i informacionnoe modelirovanie: sbornik nauchnyh trudov Tjumenskogo gosudarstvennogo universiteta. Tjumen': Izd-vo TjumGU, 2009. Vyp. 11. S. 124-130. 19. Skorer R. Ajerogidrodinamika okruzhajushhej sredy. M.: Mir, 1980. 550 s. 20. Aramanovich I.G., Levin V.I. Uravnenija matematicheskoj fiziki. M.: Nauka, 1969. 288 s. 21. D'jakonov V. Maple 10, 11, 12, 13, 14 v matematicheskih raschetah. SPb.: Piter, 2011. 800 s. 22. Volkova A.S., Gnilitskaya Yu.A., Provotorov V.V. On the Solvability of Boundary-Value Problems for Parabolic and Hyperbolic Equations on Geometrical Graphs // Automation and Remote Control. 2014. T. 75. № 2. C. 405-412. 23. Provotorov V.V. Boundary control of a parabolic system with distributed parameters on a graph in the class of summable functions // Automation and Remote Control. 2015. T. 76. № 2. C. 318-322.

Received

2015-04-06

Section of issue

Physics and production engineering

Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.