Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article

ON THE SOLVABILITY OF A NONLINEAR EQUILIBRIUM PROBLEM FOR SANDWICH PLATES

Annotation

A one-dimensional geometrically linear problem of determining the stress-strain state of the sandwich plate with a transversely soft filler in the presence of constraints on the level of formed in the filler the transverse shear stresses is considered. The generalized statement is formulated as a problem of determining a saddle point of some functional. Existence theorem of a saddle point is proved.

Keywords

sandwich plate; saddle point; transversely soft filler existence theorem

Full-text in one file

Download

UDC

517.958

Pages

1034-1037

References

1. Badriev I.B., Makarov M.V., Paymushin V.N. O vzaimodeystvii kompozitnoy plastiny, imeyushchey vibropogloshchayushchee pokrytie, s padayushchey zvukovoy volnoy // Izvestiya VUZov. Matematika. 2015. № 3. S. 75–82. 2. Badriev I.B., Banderov V.V., Zadvornov O.A. Obobshchennaya postanovka zadachi o ravnovesii myagkoy biologicheskoy obolochki // Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki. Tambov, 2013. T. 18. № 5-2. S. 2447–2449. 3. Badriev I.B., Zadvornov O.A., Saddek A.M. Convergence analysis of iterative methods for some variational inequalities with pseudomonotone operators // Differential Equations. 2001. T. 37. № 7. S. 934–942. 4. Badriev I.B., Zadvornov O.A. O skhodimosti iteratsionnogo metoda dvoystvennogo tipa resheniya smeshannykh variatsionnykh neravenstv // Differentsial'nye uravneniya. 2006. T. 42. № 8. S. 1115–1122. 5. Badriev I.B., Zadvornov O.A. Issledovanie razreshimosti osesimmetrichnoy zadachi ob opredelenii polozheniya ravnovesiya myagkoy obolochki vrashcheniya // Izvestiya vysshikh uchebnykh zavedeniy. Matematika. 2005. № 1. S. 25-30. 6. Badriev I.B., Zadvornov O.A. Issledovanie skhodimosti iteratsionnogo protsessa dlya uravneniy s vyrozhdayushchimisya operatorami // Differentsial'nye uravneniya. 1996. T. 32. № 7. S. 898–901. 7.Sharafutdinova G.G. Priblizhennye metody resheniya zadachi o formakh poteri ustoychivosti sterzhnya, imeyushchego nachal'nyy progib // Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki. Tambov, 2013. T. 18. № 5-2. S. 2743–2745. 8. Badriev I.B.,Zheltukhin V.S., Makarov M.V., Paymushin V.N. Chislennoe reshenie zadachi o ravnovesii trekhsloynoy plastiny s transversal'no-myagkim zapolnitelem v geometricheski nelineynoy postanovke // Vestnik Kazanskogo tekhnologicheskogo universiteta. 2014. T. 17. № 23. S. 393–396. 9. Paymushin V.N. Teoriya ustoychivosti trekhsloynykh plastin i obolochek (etapy razvitiya, sovremennoe sostoyanie i napravleniya dal'neyshikh issledovaniy) // Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela. 2001. № 2. S. 148–162. 10. Paimushin V.N. Nonlinear theory of the central bending of three-layer shells with defects in the form of sections of bonding failure // Soviet Applied Mechanics. 1987. V. 23. № 11. P. 1038–1043. 11. Paimushin V.N., Bobrov S.N. Refined geometric nonlinear theory of sandwich shells with a transversely soft core of medium thickness for investigation of mixed buckling forms // Mechanics of composite materials. 2000. V. 36. № 1. P. 59–66. 12. Ekeland I., Temam R. Convex Analysis and Variational Problems. Amsterdam: North-Holland, 1976. 402 p.

Received

2015-05-05

Section of issue

Scientific articles

Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.