Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article

NUMERICAL INVESTIGATION OF VARIATIONAL AND QUASI-VARIATIONAL INEQUALITIES OF THE SOFT NETWORK SHELLS THEORY

Annotation

We consider the problem of stress-strain state of soft shells under the action of the mass and the surface load. In the plane case, it is also allowed that the shell may be restricted in the movement by obstacles. Generalized statements are stated as variational and quasivariational inequalities. Solvability of the problems is investigated. To solve variational inequalities and quasivariational operators of monotone type in Banach and Hilbert spaces, iterative methods are considered. Convergence of the method is investigated. Features of applying the proposed iterative methods for solving the problems of the Soft Network Shells Theory are considered.

Keywords

soft shell; variational inequality; quasivariational inequality; existence theorem; iterative method; convergence theorem

Full-text in one file

Download

UDC

517.958

Pages

1037-1041

References

1. Gimadiev R.Sh. Dinamika myagkikh obolochek parashyutnogo tipa. Kazan': Kazanskiy gosudarstvennyy energeticheskiy universitet, 2006. 208 c. 2. Badriev I.B., Banderov V.V., Zadvornov O.A. Obobshchennaya postanovka zadachi o ravnovesii myagkoy biologicheskoy obolochki // Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki. Tambov, 2013. T. 18. № 5-2. S. 2447–2449. 3. Ridel' V.V., Gulin B.V. Dinamika myagkikh obolochek. M.: Nauka, 1990. 206 s. 4. Shagidullin R.R. Problemy matematicheskogo modelirovaniya myagkikh obolochek. Kazan': Izd-vo Kazanskogo matematicheskogo obshchestva, 2001. 235 s. 5. Bayokki K., Kapello A. Variatsionnye i kvazivariatsionnye neravenstva. Prilozheniya k zadacham so svobodnoy granitsey. M.: Nauka, 1988. 448 s. 6. Lions Zh.-L. Nekotorye metody resheniya nelineynykh kraevykh zadach. M.: Mir, 1972. 588 s. 7. Ekland I., Temam R. Vypuklyy analiz i variatsionnye problemy. M.: Mir, 1979. 399 c. 8. Gaevskiy Kh., Greger K., Zakharias K. Nelineynye operatornye uravneniya i operatornye differentsial'nye uravneniya. M.: Mir, 1978. 336 s. 9. Gol'shteyn E.G., Tret'yakov N.V. Modifitsirovannye funktsii Lagranzha. M.: Nauka, 1989. 400 s. 10. Tzeng P. Futher Applications of a Splitting Algorithm to Decomposition in Variational Inequalities and Convex Programming // Mathematical Programming. 1990. V. 48. P. 249–264. 11. Opial Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings // Bulletin of the American Mathematical Society. 1967. V. 73. № 4. P. 591–597.

Received

2015-06-02

Section of issue

Scientific articles

Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.