Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article

REGULARIZED PONTRYAGIN MAXIMUM PRINCIPLE IN OPTIMAL CONTROL FOR A PARABOLIC EQUATION WITH PHASE CONSTRAINTS IN LEBESGUE SPACES

Annotation

The stable with respect to the errors in the initial data sequential Lagrange principle and Pontryagin maximum principle in a optimal control problem are considered. The target functional for this problem isstrictly uniformly convex, the control is distributed, the phase constraints are pointwised for a parabolic equation. The control is set from Lebesgue space of summable functions with p Î (2,+∞) degree. The restriction operators images are put to the Lebesgue space of summable functions with s Î (1, 2) degree.

Keywords

optimal control; parabolic equation; dual regularization; stability; point-wise phase constraint; Lebesgue space; Lagrange’s principle; Pontryagin’s maximum principle

Full-text in one file

Download

UDC

517.97

Pages

1104-1110

References

1. Vasil'ev F.P. Metody optimizatsii: v 2-kh kn. M.: MTsNMO, 2011. 2. Sumin M.I. Ustoychivoe sekventsial'noe vypukloe programmirovanie v gil'bertovom prostranstve i ego prilozhenie k resheniyu neustoychivykh zadach //Zhurn. vych. mat. i mat. fiz. 2014. T. 54. № 1. S. 25–49. 3. Sumin M.I. Regulyarizovannaya parametricheskaya teorema Kuna–Takkera v gil'bertovom prostranstve // Zhurn. vych. mat. i mat. fiz. 2011. T. 51. № 9. S. 1594–1615. 4. Sumin M.I. On the Stable Sequential Kuhn–Tucker Theorem and its Applications // Applied Mathematics. 2012. V. 3. No. 10A (Special issue .Optimization.). P. 1334–1350. 5. Sumin M.I. Regulyarizatsiya v lineyno vypukloy zadache matematicheskogo programmirovaniya na osnove teorii dvoystvennosti // Zhurn. vych. mat. i mat. fiz. 2007. T. 47. № 4. S. 602–625. 6. Sumin M.I. Nekorrektnye zadachi i metody ikh resheniya. Materialy k lektsiyam dlya studentov starshikh kursov: uchebnoe posobie. Nizhniy Novgorod: Izdatel'stvo Nizhegorodskogo gosuniversiteta, 2009. 7. Sumin M.I. Parametricheskaya dvoystvennaya regulyarizatsiya dlya zadachi optimal'nogo upravleniya s potochechnymi fazovymi ogranicheniyami // Zhurn. vych. mat. i mat. fiz. 2009. T. 49. № 12. S. 2083–2102. 8. Sumin M.I. Ustoychivyy sekventsial'nyy printsip maksimuma Pontryagina v zadache optimal'nogo upravleniya s fazovymi ogranicheniyami // Trudy 12 Vserossiyskogo soveshchaniya po problemam upravleniya (VSPU-2014, 16-19 iyunya 2014 g.). 2014. M.: Izd-vo IPU im. V.A. Trapeznikova RAN, S. 796–808. 9. Sumin M.I. Parametricheskaya dvoystvennaya regulyarizatsiya i printsip maksimuma v zadache optimal'nogo upravleniya s fazovymi ogranicheniyami // Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki. Tambov, 2009. T. 14. Vyp. 4. S. 807–809. 10. Sumin M.I. Subdifferentsiruemost' funktsiy znacheniy i regulyarizatsiya printsipa maksimuma Pontryagina v optimal'nom upravlenii raspredelennymi sistemami // Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki. Tambov, 2015. T. 20. Vyp. 5. 11. Varga Dzh. Optimal'noe upravlenie differentsial'nymi i funktsional'nymi uravneniyami. M.: Nauka, 1977. 12. Gorshkov A.A. O dvoystvennoy regulyarizatsii v zadache vypuklogo programmirovaniya v ravnomerno vypuklom prostranstve // Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2013. № 3 (1). S. 172–180. 13. Gorshkov A.A. Ob ustoychivoy sekventsial'noy teoreme Kuna-Takkera v vypuklom programmirovanii v ravnomerno vypuklom prostranstve i ee prilozhenii // Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki. Tambov, 2013. T. 18. Vyp. 5. S. 2487–2489. 14. Gorshkov A.A., Sumin M.I. Ustoychivyy printsip Lagranzha v sekventsial'noy forme dlya zadachi vypuklogo programmirovaniya v ravnomerno vypuklom prostranstve i ego prilozheniya // Izvestiya vuzov. Matematika. 2015. № 1. S. 14–28. 15. Ladyzhenskaya O.A., Solonnikov V.A., Ural'tseva N.N. Lineynye i kvazilineynye uravneniya parabolicheskogo tipa. M.: Nauka, 1967. 16. Casas E., Raymond J.-P., Zidani H. Pontryagin’s Principle for Local Solutions of Control Problems with Mixed Control-State Constraints // SIAM J. Control Optim. 2000. V. 39. № 4. P. 1182-1203.

Received

2015-06-09

Section of issue

Scientific articles

Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.