Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article

ON THE ILL-POSED CAUCHY PROBLEM FOR A NONLINEAR RETARDED SYSTEM

Annotation

The ill-posed Cauchy problem on the negative half-line is considered for a nonlinear non-autonomous system of retarded differential equations. The Tikhonov’s regularization method is used for solving it. We choose a special stabilizing functional which is used in the absence of a priori information about smoothness of solutions of the retarded system. We obtain a singular boundary value problem, and the solution of which could be defined as regularized solution of the retarded system on the finite interval of the negative half-plain.

Keywords

nonlinear differential equations with delay; ill-posed problem

Full-text in one file

Download

UDC

517.929

Pages

1132-1135

References

1. Kheyl Dzh. Teoriya funktsional'no-differentsial'nykh uravneniy. M.: Mir, 1984. 2. Bellman R., Kuk K. Differentsial'no-raznostnye uravneniya. M.: Mir, 1967. 3. Dolgiy Yu.F., Putilova E.N. Prodolzhenie nazad resheniy lineynogo differentsial'nogo uravneniya s zapazdyvaniem kak nekorrektnaya zadacha // Differents. uravneniya. 1993. T. 29. № 8. C. 1317–1323. 4. Dolgiy Yu.F., Surkov P.G. Asimptotika regulyarizovannykh resheniy lineynoy neavtonomnoy sistemy differentsial'nykh uravneniy s operezheniem // Differents. uravneniya. 2010. T. 46. № 2. S. 467–485. 5. Dolgii Yu.F., Surkov P.G. Asymptotics of regularized solutions of an ill-posed Cauchy problem for an autonomous linear system of differential equations with commensurable delays // Proc. Steklov Inst. Math. 2014. V. 287. Suppl. 1. P. 55–67. 6. Surkov P.G. Regulyarizatsiya nekorrektnoy zadachi Koshi dlya avtonomnoy sistemy s zapazdyvaniem pri ispol'zovanii odnogo klassa stabilizatorov // Tr. in-ta matematiki i mekhaniki. 2014. T. 20. № 3. S. 234–245. 7. Tikhonov A.N., Arsenin V.Ya. Metody resheniya nekorrektnykh zadach. M.: Nauka, 1986. 8. Dolgiy Yu.F., Surkov P.G. Nekorrektnaya zadacha vosstanovleniya chislennosti populyatsii v matematicheskoy modeli Khatchinsona // Tr. in-ta matematiki i mekhaniki. 2011. T. 17. № 1. S. 70–84. 9. Surkov P.G. Asymptotic behavior of regularized solutions of one model of economic growth with delay // Computational mathematics and modeling. 2014. V. 25. № 4. P. 484–499. 10. Khartman F. Obyknovennye differentsial'nye uravneniya. M.: Mir, 1970. 11. Vasin V.V., Ageev A.L. Nekorrektnye zadachi s apriornoy informatsiey. Ekaterinburg: Ural'skaya izdatel'skaya firma .Nauka., 1993. 12. Vaynberg M.M. Variatsionnyy metod i metod monotonnykh operatorov. M.: Nauka, 1972. 13. El'sgol'ts L.E., Norkin S.B. Vvedenie v teoriyu differentsial'nykh uravneniy s otklonyayushchimsya argumentom. M.: Nauka, 1971.

Received

2015-04-24

Section of issue

Scientific articles

Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.