Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article

NONLINEAR PROBLEMS ON MIXED BUCKLING OF SANDWICH PLATE UNDER LONGITUDINAL-TRANSVERSE BENDING

Annotation

One-dimensional geometrically nonlinear and linearized problems on mixed buckling of the external layers sandwich plate with a transversely soft filler, located in a mechanical compression force acting on one of the external layers, are considered. To solve the problems, iterative methods are proposed. These methods are implemented numerically. The results of calculations for the model problems are analyzed.

Keywords

sandwich plate; geometric nonlinearity; transversely soft filler; iterative method

Full-text in one file

Download

UDC

543.4+544.2

Pages

1275-1278

References

1. Badriev I.B., Makarov M.V., Pajmushin V.N. O vzaimodejstvii kompozitnoj plastiny, imejushhej vibropogloshhajushhee pokrytie, s padajushhej zvukovoj volnoj // Izvestija VUZov. Matematika. 2015. № 3. S. 75–82. 2. Badriev I.B., Banderov V.V., Zadvornov O.A. Obobshhennaja postanovka zadachi o ravnovesii mjagkoj biologicheskoj obolochki // Vestnik Tambovskogo universiteta. Serija Estestvennye i tehnicheskie nauki. Tambov, 2013. T. 18. № 5-2. S. 2447–2449. 3. Badriev I.B., Zadvornov O.A., Saddek A.M. Convergence analysis of iterative methods for some variational inequalities with pseudomonotone operators // Differential Equations. 2001. V. 37. № 7. P. 934–942. 4. Badriev I.B., Zadvornov O.A. O shodimosti iteracionnogo metoda dvojstvennogo tipa reshenija smeshannyh variacionnyh neravenstv // Differencial'nye uravnenija. 2006. T. 42. № 8. S. 1115–1122. 5. Badriev I.B., Zadvornov O.A. Issledovanie razreshimosti osesimmetrichnoj zadachi ob opredelenii polozhenija ravnovesija mjagkoj obolochki vrashhenija // Izvestija vysshih uchebnyh zavedenij. Matematika. 2005. № 1. S. 25-30. 6. Badriev I.B., Zadvornov O.A. Issledovanie shodimosti iteracionnogo processa dlja uravnenij s vyrozhdajushhimisja operatorami // Differencial'nye uravnenija. 1996. T. 32. № 7. S. 898–901. 7.Sharafutdinova G.G. Priblizhennye metody reshenija zadachi o formah poteri ustojchivosti sterzhnja, imejushhego nachal'nyj progib // Vestnik Tambovskogo universiteta. Serija Estestvennye i tehnicheskie nauki. Tambov, 2013. T. 18. № 5-2. S. 2743–2745. 8. Pajmushin V.N. Teorija ustojchivosti trehslojnyh plastin i obolochek (jetapy razvitija, sovremennoe sostojanie i napravlenija dal'nejshih issledovanij) // Izvestija Rossijskoj akademii nauk. Mehanika tverdogo tela. 2001. № 2. S. 148–162. 9. Paimushin V.N. Nonlinear theory of the central bending of three-layer shells with defects in the form of sections of bonding failure // Soviet Applied Mechanics. 1987. V. 23. № 11. P. 1038–1043. 10. Paimushin V.N., Bobrov S.N. Refined geometric nonlinear theory of sandwich shells with a transversely soft core of medium thickness for investigation of mixed buckling forms // Mechanics of composite materials. 2000. V. 36. № 1. P. 59–66. 11. Karchevskij M.M., Ljashko A.D. Raznostnye shemy dlja nelinejnyh zadach matematicheskoj fiziki. Kazan': Izd-vo Kazanskogo universiteta, 1976. 156 s. 12. Badriev I.B., Zheltuhin V.S., Makarov M.V., Pajmushin V.N. Chislennoe reshenie zadachi o ravnovesii trehslojnoj plastiny s transversal'no-mjagkim zapolnitelem v geometricheski nelinejnoj postanovke // Vestnik Kazanskogo tehnologicheskogo universiteta. 2014. T. 17. № 23. S. 393–396.

Received

2015-06-01

Section of issue

Scientific articles

Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.