Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article

SUPPORT FUNCTION METHOD IN BILINEAR TWO-PERSON GAME

Annotation

In the paper we consider bilinear two-person game without assumption about convexity of players’ loss functions. By constructing Nikaido-Isoda function, Nash equilibrium problem is reduced to an optimization problem with nonconvex and implicitly defined objective function, so global search is required.We propose an algorithm of support function method for solving obtained optimization problem. Such approach either allows to find an equilibrium point or gives an answer that the game has no equilibrium if this is a case.

Keywords

Nash equilibrium; Nikaido-Isoda function; nonconvex optimization; support function method

Full-text in one file

Download

UDC

519.833

Pages

1312-1316

References

1. Dem'janov V.F., Malozjomov V.N. Vvedenie v minimaks. M.: Nauka, 1972. 368 s. 2. Antipin A.S. Gradientnyj i jekstragradientnyj podhody v bilinejnom ravnovesnom programmirovanii. M.: VC im. A.A. Dorodnicyna RAN. 2002. 130 s. 3. Zuhovickij S.I., Poljak R.A., Primak M.E. Vognutye igry mnogih lic // Jekonomika i matematicheskie metody. 1971. T. 7. № 6. S. 888–900. 4. Krawczyk J.B., Uryasev S. Relaxation Algorithms to Find Nash Equilibria with Economic Applications // Environmental Modeling and Assessment. 2000. V. 5. P. 63–73. 5. Fl˚am S.D., Ruszczyґnski A. Finding Normalized Equilibrium in Convex-Concave Games // International Game Theory Review. 2008. V. 10. № 1. P. 37–51. 6. von Heusinger A., Kanzow C. Relaxation Methods for Generalized Nash Equilibrium Problems with Inexact Line Search // Journal of Optimization Theory and Applications. 2009. V. 143. P. 159–183. 7. Langenberg N. Interior Point Methods for Equilibrium Problems // Computational Optimization and Applications. 2012. V. 53. P. 453–483. 8. Dreves A., von Heusinger A., Kanzow C., Fukushima M. A Globalized Newton Method for the Computation of Normalized Nash Equilibria // Journal of Global Optimization. 2013. V. 56. P. 327–340. 9. Nikaidˆo H., Isoda K. Note on Noncooperative Convex Games // Pacific Journal of Mathematics. 1955. V. 5. № 5. P. 807–815. 10. Bulatov V.P. Numerical Methods for Solving the Multiextremal Problems Connected with the Inverse Mathematical Programming Problems // Journal of Global Optimization. 1998. V. 12. P. 405–413. 11. Khamisov O.V. A Global Optimization Approach to Solving Equilibrium Programming Problems // Series on Computers and Operations Research. V. 1: Optimization and Optimal Control. 2003. P. 155–164. 12. Rosen J.B. Existence and Uniqueness of Equilibrium Points for Concave n -person Games // Econometrica. 1965. V. 33. № 3. P. 520–534.

Received

2015-05-07

Section of issue

Scientific articles

Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.