Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article

SUBDIFFERENTIABILITY OF VALUE FUNCTIONS AND REGULARIZATION OF PONTRYAGIN MAXIMUM PRINCIPLE IN OPTIMAL CONTROL FOR DISTRIBUTED SYSTEMS

Annotation

We discuss regularized or, in other words, stable with respect to errors of input data sequential Lagrange principle in nondifferential form and Pontryagin maximum principle in both convex and nonconvex parametric optimal boundary control problems with point-wise state constraints for parabolic equation.

Keywords

optimal control; parabolic equation; minimizing sequence; subdifferentiability; value function; stability; Lagrange principle; Kuhn-Tucker theorem; Pontryagin maximum principle; modified Lagrange function; point-wise state constraints; dual regularization

Full-text in one file

Download

UDC

517.977

Pages

1461-1478

References

1. Pontryagin L.S., Boltyanskiy V.G., Gamkrelidze R.V., Mishchenko E.F. Matematicheskaya teoriya optimal'nykh protsessov. M.: Nauka, 1969. 2. Sumin M.I. Ustoychivoe sekventsial'noe vypukloe programmirovanie v gil'bertovom prostranstve i ego prilozhenie k resheniyu neustoychivykh zadach // Zhurn. vychisl. matem. i matem. fiz. 2014. T. 54. № 1. S. 25–49. 3. Sumin M.I. Regulyarizovannyy sekventsial'nyy printsip maksimuma Pontryagina v vypukloy zadache optimal'nogo upravleniya s potochechnymi fazovymi ogranicheniyami // Izvestiya instituta matematiki i informatiki UdGU. 2012. Vyp. 1(39). S. 130–133. 4. Sumin M.I. Ustoychivyy sekventsial'nyy printsip Lagranzha v vypuklom optimal'nom upravlenii s potochechnymi fazovymi ogranicheniyami // Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki. Tambov, 2013. T. 18. Vyp. 5. S. 2698–2699. 5. Sumin M.I. Regulyarizovannyy gradientnyy dvoystvennyy metod resheniya obratnoy zadachi final'nogo nablyudeniya dlya parabolicheskogo uravneniya //Zhurn. vychisl. matem. i matem. fiz. 2004. T. 44. № 11. S. 2001–2019. 6. Sumin M.I. Regulyarizatsiya v lineyno vypukloy zadache matematicheskogo programmirovaniya na osnove teorii dvoystvennosti // Zhurn. vychisl. matem. i matem. fiz. 2007. T. 47. № 4. S. 602–625. 7. Sumin M.I. Nekorrektnye zadachi i metody ikh resheniya. Materialy k lektsiyam dlya studentov starshikh kursov: Uchebnoe posobie. Nizhniy Novgorod: Izdatel'stvo Nizhegorodskogo gosuniversiteta, 2009. 8. Varga Dzh. Optimal'noe upravlenie differentsial'nymi i funktsional'nymi uravneniyami. M.: Nauka, 1977. 9. Sumin M.I. Parametricheskaya dvoystvennaya regulyarizatsiya dlya zadachi optimal'nogo upravleniya s potochechnymi fazovymi ogranicheniyami // Zhurn. vychisl. matem. i matem. fiz. 2009. T. 49. № 12. S. 2083–2102. 10. Sumin M.I. Ustoychivyy sekventsial'nyy printsip maksimuma Pontryagina v zadache optimal'nogo upravlenii s fazovymi ogranicheniyami // Trudy XII Vserossiyskogo soveshchaniya po problemam upravleniya (VSPU-2014, 16-19 iyunya 2014 g.). 2014. M.: Izd-vo IPU im. V.A. Trapeznikova RAN, S. 796–808. 11. Sumin M.I. Parametricheskaya dvoystvennaya regulyarizatsiya i printsip maksimuma v zadache optimal'nogo upravleniya s fazovymi ogranicheniyami // Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki. Tambov, 2009. T. 14. Vyp. 4. S. 807–809. 12. Sumin M.I. Regulyarizovannyy dvoystvennyy metod resheniya nelineynoy zadachi matematicheskogo programmirovaniya // Zhurn. vychisl. matem. i matem. fiz. 2007. T. 47. № 5. S. 796–816. 13. Sumin M.I. Parametric Dual Regularization in a Nonlinear Mathematical Programming // In book «Advances in Mathematics Research, Volume 11». Chapter 5. New-York: Nova Science Publishers Inc. 2010. P. 103–134. 14. Kanatov A.V., Sumin M.I. Sekventsial'naya ustoychivaya teorema Kuna-Takkera v nelineynom programmirovanii // Zhurn. vychisl. matem. i matem. fiz. 2013. T. 53. № 8. S. 1249–1271. 15. Sumin M.I. Parametricheskaya dvoystvennaya regulyarizatsiya v optimizatsii, optimal'nom upravlenii i obratnykh zadachakh // Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki. Tambov, 2010. T. 15. Vyp. 1. S. 467–92. 16. Borwein J.M., Strojwas H.M. Proximal Analysis and Boundaries of Closed Sets in Banach Space, Part I: Theory // Can. J. Math. 1986. V. 38. №2. P. 431–452; Part II: Applications // Can. J. Math. 1987. V. 39. № 2. P. 428–472. 17. Klark F. Optimizatsiya i negladkiy analiz. M.: Nauka, 1988. 18. Loewen P.D. Optimal Control via Nonsmooth Analysis. CRM Proceedings and Lecture Notes. V. 2. Providence, RI: Amer. Math. Soc., 1993. 19. Clarke F.H., Ledyaev Yu.S., Stern R.J.,Wolenski P.R. Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics, vol. 178. New York: Springer-Verlag, 1998. 20. Mordukhovich B.S. Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications. Berlin: Springer, 2006. 21. Sumin M.I. Parametricheskaya zadacha optimal'nogo upravleniya polulineynym ellipticheskim uravneniem s potochechnym fazovym ogranicheniem i granichnym upravleniem // Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki. Tambov, 2000. T. 5. Vyp. 4. S. 495–497. 22. Sumin M.I. Iterativnaya regulyarizatsiya gradientnogo dvoystvennogo metoda resheniya obratnoy zadachi final'nogo nablyudeniya dlya parabolicheskogo uravneniya // Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki. Tambov, 2003. T. 8. Vyp. 3. S. 459–460. 23. Sumin M.I. Dvoystvennaya regulyarizatsiya v optimizatsii, optimal'nom upravlenii i obratnykh zadachakh // Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki. Tambov, 2007. T. 12. Vyp. 4. S. 527–528. 24. Sumin M.I. Parametricheskaya dvoystvennaya regulyarizatsiya i teorema Kuna–Takkera // Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki. Tambov, 2011. T. 16. Vyp. 1. S. 77–89. 25. Zhidkov A.A., Kalinin A.V., Sumin M.I. Algoritm dvoystvennoy regulyarizatsii v obratnykh zadachakh teorii global'noy elektricheskoy seti // Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki. Tambov, 2011. T. 16. Vyp. 4. S. 1074–1076. 26. Sumin M.I. Regulyarizovannaya parametricheskaya teorema Kuna–Takkera i ee prilozheniya // Vestnik Tambovskogo un-ta. Seriya Estestvennye i tekhnicheskie nauki. Tambov, 2011. T. 16. Vyp. 4. S. 1189–1191. 27. Ladyzhenskaya O.A., Solonnikov V.A., Ural'tseva N.N. Lineynye i kvazilineynye uravneniya parabolicheskogo tipa. M.: Nauka, 1967. 28. Plotnikov V.I. Teoremy edinstvennosti, sushchestvovaniya i apriornye svoystva obobshchennykh resheniy // Dokl. AN SSSR. 1965. T. 165. № 1. S. 33–35. 29. Casas E., Raymond J.-P., Zidani H. Pontryagin’s Principle for Local Solutions of Control Problems with Mixed Control-State Constraints // SIAM J. Control Optim. 2000. Vol. 39. № 4. P. 1182–1203. 30. Sumin M.I. Pervaya variatsiya i printsip maksimuma Pontryagina v optimal'nom upravlenii dlya uravneniy v chastnykh proizvodnykh // Zhurn. vychisl. matem. i matem. fiz. 2009. T. 49. № 6. S. 998–1020. 31. Sumin M.I. Ob ustoychivom sekventsial'nom printsipe Lagranzha v vypuklom programmirovanii i ego primenenii pri reshenii neustoychivykh zadach // Tr. In-ta matematiki i mekhaniki UrO RAN. 2013. T. 19. № 4. S. 231–240.

Received

2015-06-01

Section of issue

Scientific articles

Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.