Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article

ROBUST STABILIZATION OF A CLASS OF CHAOTIC SYSTEMS BASED ON SUPERSTABILITY CONDITIONS

Annotation

In the work, we present a superstability conditions based method of the analysis and control of hyperchaotic systems with parametric uncertainty. The constructive ways of checking the system achievability of the superstable dynamics are described. A class of superstabilizable hyperchaotic systems is defined. For this class we show the ways of using superstability conditions for the robust analysis and design of the superstabilizable controller, which provides the given characteristics of the transient response. The efficiency of the presented approach is proved by the numeric simulation result cited in the work.

Keywords

hyperchaotic systems; superstability; robust stabilization

Full-text in one file

Download

UDC

517.923+517.977.5+519.718+62.50

Pages

1478-1486

References

1. LEu J., Chen G. Generating multiscroll chaotic attractors: Theories, methods and applications // International Journal of Bifurcation and Chaos. 2006. 16(4). P. 775-858. 2. Yu H.J., Cai G.L., Li Y.X. Dynamic analysis and control of a new hyperchaotic finance system // Nonlinear Dynamics. 2012. 67(3). P. 2171-2182. 3. Li Y., Tang W.K.S., Chen G. Generating hyperchaos via state feedback control // International Journal of Bifurcation and Chaos. 2005. 15(10). P. 3367-3375. 4. Chen Z., Yang Y., Qi G., Yuana Z. A novel hyperchaos system only with one equilibrium // Physics Letters A. 2007. 360(6). P. 696-701. 5. Qi G., van Wyk M.A., van Wyk B.J., Chen G. On a new hyperchaotic system // Physics Letters A. 2008. 372(2). P. 124-136. 6. Hu G. Generating hyperchaotic attractors with three positive lyapunov exponents via state feedback control // International Journal of Bifurcation and Chaos. 2009. 19(2). P. 651-660. 7. Correia M.J., Rech P.C. Hyperchaos in a new four-dimensional autonomous system // International Journal of Bifurcation and Chaos. 2010. 20(10). P. 3295-3301. 8. Li C., Sprott J.C. Coexisting Hidden Attractors in a 4-D Simplified Lorenz System // International Journal of Bifurcation and Chaos. 2014. 24(3). P. 1450034. 9. Takahashi Y., Nakano H., Saito T. A simple hyperchaos generator based on impulsive switching // IEEE Transactions on Circuits and Systems II. 2004. 51(9). P. 468-472. 10. Yu S.M., Lu J.H., Chen G.R. Theoretical design and circuit implementation of multidirectional multitorus chaotic attractors // IEEE Transactions on Circuits and Systems I. 2007. 54. P. 2087-2098. 11. Liu M., Feng J., Tse C.K. A new hyperchaotic system and its circuit implementation // International Journal of Bifurcation and Chaos. 2010. 20(4). P. 1201-1208. 12. Yujun N., Xingyuan W., Mingjun W., Huaguang Z. A new hyperchaotic system and its circuit implementation // Communications in Nonlinear Science and Numerical Simulation. 2010. 15(11). P. 3518-3524. 13. Yu S., Lu J., Yu X., Chen G. Design and implementation of grid multiwing hyperchaotic Lorenz system family via switching control and constructing super-heteroclinic loops // IEEE Transactions on Circuits and Systems I. 2012. 59(5). P. 1015-1028. 14. Li Q., Hu S., Tang S., Zeng G. Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation // International Journal of Circuit Theory and Applications. 2014. 42(11). P. 1172-1188. 15. El-Sayed A.M.A., Nour H.M., Elsaid A., Matouk A.E., Elsonbaty A. Circuit realization, bifurcations, chaos and hyperchaos in a new 4D system // Applied Mathematics and Computation. 2014. 239. P. 333-345. 16. Yang L., Liu Z.R., Mao J.M. Controlling hyperchaos // Physical Review Letters. 2000. 84(1). P. 67-70. 17. Yan J.J. H-infinity controlling hyperchaos of the Rossler system with input nonlinearity // Chaos, Solitons & Fractals. 2004. 21(2). P. 283-293. 18. Li Y.X., Chen G.R., Tang W.K.S. Controlling a unified chaotic system to hyperchaotic // IEEE Transactions on Circuits and Systems II. 2005. 52(4). P. 204-207. 19. Yan Z.Y. Controlling hyperchaos in the new hyperchaotic Chen system // Applied Mathematics and Computation. 2005. 168(2). P. 1239-1250. 20. Jia Q. Adaptive control and synchronization of a new hyperchaotic system with unknown parameters // Physics Letters A. 2007. 362 (5). P. 424-429. 21. Yang Q., Zhang K., Chen G. Hyperchaotic attractors from a linearly controlled Lorenz system // Nonlinear Analysis: Real World Applications. 2009. 10(3). P. 1601-1617. 22. Dou F., Sun H., Duan W., LEu K. Controlling hyperchaos in the new hyperchaotic system // Communications in Nonlinear Science and Numerical Simulation. 2009. 14(2). P. 552-559. 23. Wang H.-X, Cai G.-L., Miao S., Tian L.-X. Nonlinear feedback control of a novel hyperchaotic system and its circuit implementation // Chinese Physics B. 2010. 19(3). P. 030509. 24. Wang X., Zhao G. Hyperchaos generated from the unified chaotic system and its control // International Journal of Modern Physics B. 2010. 24(23). P. 4619-4637. 25. Zhu C. Controlling hyperchaos in hyperchaotic Lorenz system using feedback controllers // Applied Mathematics and Computation. 2010. 216(10). P. 3126-3132. 26. Njah A.N. Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques // Nonlinear Dynamics. 2010. 61(1-2). P. 1-9. 27. Effati S., Saberi Nik H., Jajarmi A. Hyperchaos control of the hyperchaotic Chen system by optimal control design // Nonlinear Dynamics. 2013. 73(1-2). P. 499-508. 28. Toopchi Y., Wang J. Chaos Control and Synchronization of a Hyperchaotic Zhou System by Integral Sliding Mode control // Entropy. 2014. 16(12). P. 6539-6552. 29. Polyak B.T, Shcherbakov P.S. Sverkhustoychivye lineynye sistemy upravleniya. I. Analiz // Avtomatika i Telemekhanika. 2002. № 8. S. 37-53. 30. Polyak B.T, Shcherbakov P.S. Sverkhustoychivye lineynye sistemy upravleniya. II. Sintez // Avtomatika i Telemekhanika. 2002. № 11. S. 56-75. 31. Talagaev Yu.V., Tarakanov A.F. Sverkhustoychivost' i optimal'noe mnogoparametricheskoe podavlenie khaoticheskoy dinamiki klassa avtonomnykh sistem s kvadratichnymi nelineynostyami // Differentsial'nye uravneniya. 2012. T. 48. № 1. S. 148-152. 32. Talagaev Y.V. Robust analysis and superstabilization of chaotic systems // Proc. 2014 IEEE Conference on Control Applications. Antibes, France, Oct. 8-10. 2014. P. 1431-1436. 33. Talagaev Yu.V., Tarakanov A.F. Stabilizatsiya neustoychivykh nepodvizhnykh tochek optimal'noy dinamicheskoy korrektsiey parametrov khaoticheskikh sistem // Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki. Tambov, 2007. T. 12. № 4. S. 529-530. 34. Talagaev Yu.V. Analiz usloviy sverkhustoychivosti i optimal'naya korrektsiya parametrov klassa khaoticheskikh sistem // Sistemy upravleniya i informatsionnye tekhnologii. 2014. T. 55. № 1.1. S. 198-204. 35. Lu J., Chen G., Cheng D. A New Chaotic System and Beyond: The Generalized Lorenz-Like System // International Journal of Bifurcation and Chaos. 2004. 14(5). P. 1507-1537.

Received

2015-06-09

Section of issue

Scientific articles

Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.