Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article

Existence and stability of bumps in a neural field model

Annotation

We investigate existence and stability of bumps (localized stationary solutions) in a homogenized 2-population neural field model, when the firing rate functions are given by the unit step function.

Keywords

homogenization theory; existence and stability of stationary solutions of nonlocal neural field models

Full-text in one file

Download

DOI

10.20310/1810-0198-2018-23-122-131-135

UDC

51-76

Pages

131-135

References

1. Nguetseng G. A general convergence result for a functional related to the theory of homogenization. SIAM Journal on Mathematical Analysis, 1989, vol. 20, no. 3, pp. 608-623. 2. Kolodina K., Oleynik A., Wyller J. Single bumps in a 2-population homogenized neuronal network model. Physica D: Nonlinear Phenomena, 2018, vol. 310, pp. 40-53.

Received

2018-03-23

Section of issue

Scientific articles

Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.