Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article

On a controllability problem for a differential inclusion with fractional derivatives of Caputo

Annotation

The paper gives the controllability problem for a differential inclusion of fractional order in a Banach space.

Keywords

differential inclusion of fractional order; fixed point; condensing map; measure of noncompactness

Full-text in one file

Download

DOI

10.20310/1810-0198-2018-23-124-679-684

UDC

517.92

Pages

679-684

References

1. Kamenskii M., Obukhovskii V., Petrosyan G., Yao J.-C. On semilinear fractional order differential inclusions in banach spaces. Fixed Point Theory, 2017, vol. 18, no. 1, pp. 269-292. 2. Kamenskii M., Obukhovskii V., Petrosyan G., Yao J.-C. Boundary value problems for semilinear differential inclusions of fractional order in a Banach space. Applicable Analysis, 2017, vol. 96, pp. 1-21. 3. Obukhovskiy V.V., Petrosyan G.G. O zadache Koshi dlya funktsional’no-differentsial’nogo vklyucheniya drobnogo poryadka s impul’snymi kharakteristikami v banakhovom prostranstve [On the Cauchy problem for functional differential inclusions of fractional order with impulsive characteristics in a banach space]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika – Proceedings of Voronezh State University. Series: Physics. Mathematics, 2013, no. 1, pp. 192-209. (In Russian). 4. Petrosyan G.G., Afanasova M.S. O zadache Koshi dlya differentsial’nogo vklyucheniya drobnogo poryadka s nelineynym granichnym usloviyem [On the Cauchy problem for a differential inclusion of fractional order with nonlinear boundary conditions]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika – Proceedings of Voronezh State University. Series: Physics. Mathematics, 2017, no. 1, pp. 135-151. (In Russian). 5. Petrosyan G.G. O nelokal’noy zadache Koshi dlya funktsional’no-differentsial’nogo uravneniya s drobnoy proizvodnoy v banakhovom prostranstve [On a nonlocal Cauchy problem for functional differential equations with fractional derivative in the banach space]. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika – Proceedings of Voronezh State University. Series: Physics. Mathematics, 2012, no. 2, pp. 207-212. (In Russian). 6. Petrosyan G.G. On the structure of the solutions set of the Cauchy problem for a differential inclusions of fractional order in a Banach space. Nekotorye voprosy analiza, algebry, geometrii i matematicheskogo obrazovaniya [Some Questions of Analysis, Algebra, Geometry and Mathematical Education]. Voronezh, 2016, pp. 7-8. (In Russian). 7. Borisovich Yu.G., Guelman B.D., Myshkis A.D., Obukhovsky B.V. Vvedeniye v teoriyu mnogoznachnykh otorbazheniy i differentsial’nykh vklyucheniy [Introduction to The Theory of Many-Valued Separations and Differential Inclusions]. Moscow, Book House “Librokom” Publ., 2011. (In Russian).

Received

09.04.2018

Section of issue

Scientific articles

Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.