Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article

Dedetermination - method of some modeling problems’ solving


The method of dedetermination as a new method designed to solving problem of calculation of deterministic functions with the so-called singular points where the function does not take a certain value is proposed. The aim is to describe an approach that allows for division by zero and thus exclude singular points of such functions. The proposed method is to move from problematic (from point of view of calculating) exact function to the corresponding not determined (interval) function by replacing determined function parameters by corresponding interval parameters. Due to this change the values of the function at the singular points will be well-defined interval and values. Latter allows you to solve the problem of finding the function meaning. The solution to this problem is achieved by legalization of division by zero by intervalization of calculations. It uses the principle of cutting out a neighborhood of zero in the interval being denominator of the fraction representing studied function. For the simplified by cutting out interval function the effective formulas are derived based on the main provisions of interval mathematics and make it easy to calculate the value of this function. The proposed in the article approach to the problem of calculating functions with singular points is important for all classes of systems in which the problem really exists. It is about the systems which functions have any number of specific points. Such systems exist mostly in telemetry, reliability theory and practice, humanitarian and many others areas. Features of these areas is that they do not always apply the classical methods of deterministic mathematics. This leads to search for new approaches to solving problems that arise here.


interval; interval function; interval calculations; dedetermination; division by zero

Full-text in one file





62-50; 519.7; 519.8




1. Gnedenko B.V. Kurs teorii veroyatnostey [The Theory of Probability Course]. Moscow, Nauka Publ., 2004, 350 p. (In Russian). 2. Zade L.A. Ponyatie lingvisticheskoy peremennoy i ego primenenie k prinyatiyu priblizhennykh resheniy [Linguistic Variable Notion and its Appliance for Taking Approximate Solutions]. Moscow, Mir Publ., 1976, 165 p. (In Russian). 3. Alefel'd G., Khertsberger Yu. Vvedenie v interval'nye vychisleniya [Introduction in Interval Calculations]. Moscow, Mir Publ., 1987, 360 p. (In Russian). 4. Gorban' I.I. Fenomen statisticheskoy ustoychivosti [Phenomenon of Statistical Stability]. Kiev, Naukova Dumka Publ., 2014, 370 p. (In Russian). 5. Wiener N. Extrapolation, Interpolation and Smoothing of Stationary Time Series. New York, Technology Press and Wiley, 1949, 180 p. 6. Kolmogorov A.N. Interpolirovanie i ekstrapolirovanie statsionarnykh sluchaynykh posledovatel'nostey [Interpolating and extrapolating of stationary random sequence]. Izvestiya Akademii nauk SSSR. Matematika [News of Academy of Sciences of the USSR. Mathematics], 1941, no. 5, pp. 3-14. (In Russian). 7. Kantorovich L.V. O nekotorykh novykh podkhodakh k vychislitel'nym metodam i obrabotke nablyudeniy [About some new approaches to calculating methods and processing of observation results]. Sibirskiy matematicheskiy zhurnal – Siberian Mathematical Journal, 1962, vol. 3, no. 5, pp. 3-14. (In Russian). 8. Nalimov V.V., Chernova N.A. Teoriya eksperimenta [Experiment Theory]. Moscow, Nauka Publ., 1971, 320 p. (In Russian). 9. Narin'yani A.S. Nedoopredelennost' v sisteme predstavleniya i obrabotki znaniy [Uncertainty in the system of presentation and processing of data]. Izvestiya Akademii nauk SSSR. Tekhnicheskaya kibernetika [News of Academy of Sciences of the USSR. Technical Cybernetics], 1986, no. 5, pp. 3-28. (In Russian). 10. Hyvonen E. Constraint Reasoning Based on Interval Arithmetic: the Tolerance Propagation Approach. Artificial Intelligence, 1992, vol. 58, p. 19. 11. Voshchinin A.P., Sotirov G.R. Optimizatsiya v usloviyakh neopredelennosti [Optimization in Conditions of Uncertainty]. Moscow, Electronic-machinery institute–Sofiya; Tekhnika Publ., 1989, 226 p. (In Russian). 12. Voshchinin A.P., Bochkov A.F., Sotirov G.R. Interval'nyy analiz dannykh [Interval analysis of data]. Zavodskaya laboratoriya – Industrial Laboratory, 1990, no. 7, pp. 76-81. (In Russian). 13. Kurzhanskiy A.B. Zadacha identifikatsii – teoriya garantirovannykh otsenok [Identification task – theory of guaranteed estimation]. Avtomatika i telemekhanika – Automation and Remote Control, 1991, no. 4, pp. 75-89. (In Russian). 14. Levin V.I. Diskretnaya optimizatsiya v usloviyakh neopredelennosti [Discrete optimization in the conditions of uncertainty]. Avtomatika i telemekhanika – Automation and Remote Control, 1992, no. 7, pp. 97-106. (In Russian). 15. Levin V.I. Bulevo lineynoe programmirovanie s interval'nymi koeffitsientami [Boole linear simulation with interval coefficients]. Avtomatika i telemekhanika – Automation and Remote Control, 1994, no. 7, pp. 111-122. (In Russian). 16. Levin V.I. Interval'noe diskretnoe programmirovanie [Interval discrete simulation]. Kibernetika i sistemnyy analiz – Cybernetics and Systems Analysis, 1994, no. 6, pp. 92-103. (In Russian). 17. Levin V.I. Nelineynaya optimizatsiya v usloviyakh interval'noy neopredelennosti [Non-linear optimization in the conditions of interval uncertainty]. Kibernetika i sistemnyy analiz – Cybernetics and Systems Analysis, 1999, no. 2, pp. 138-146. (In Russian). 18. Levin V.I. Metody optimizatsii sistem v usloviyakh interval'noy neopredelennosti parametrov [Systems optimization methods in conditions of interval uncertainty of parameters]. Informatsionnye tekhnologii – Information Technology, 2012, no. 4, pp. 17-22. (In Russian). 19. Levin V.I. Metodologiya optimizatsii v usloviyakh neopredelennosti metodom determinizatsii [The methodology of optimization in condition of uncertainty by determination method]. Informatsionnye tekhnologii – Information Technology, 2014, no. 5, pp. 13-21. (In Russian). 20. Levin V.I. Analiz povedeniya netochno zadannykh funktsiy s pomoshch'yu interval'no-differentsial'nogo ischisleniya [The analysis of inexactly specified functions by interval-differential calculus]. Informatsionnye tekhnologii – Information Technology, 2015, vol. 21, no. 3, pp. 163-170. (In Russian).



Section of issue


Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.