Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article

New interatomic potentials for simulation of refractory bcc metals: Nb, Mo, Ta and W


Accuracy simulation of BCC refractory metals requires a description of their thermal expansion, melting point and heat of fusion with great accuracy in conjunction with other basic characteristics of these metals. The interatomic potentials satisfying this requirement are currently not available. The interaction potentials between atoms in niobium, molybdenum, tantalum and tungsten in the new method developed by us earlier are constructed. The cohesive energy, the lattice constant, the elastic modules, the equation of state, the energy formation and the energy migration of vacancy, the phonon dispersion curves, the thermal expansion, the melting point and the heat of fusion were calculated for each metal and found good agreement with the experimental data. The energy formation of interstitial atoms and the energy formation of free surfaces with low Miller indices were calculated with constructed potentials.


interatomic potentials; refractory metals; thermal expansion; melting point; heat of fusion

Full-text in one file





004.942, 538.953




1. Zinkle S.J., Ghoniem N.M. Operating temperature windows for fusion reactor structural materials. Fusion Engineering and Design, 2000, vol. 51, pp. 55-71. 2. Brinksmeier E., Aurich J.C., Govekar E., Heinzel C., Hoffmeister H.-W., Klocke F., Peters J., Rentsch R., Stephenson D.J., Uhlmann E., Weinert K., Wittmann M. Advances in modeling and simulation of grinding processes. CIRP Annals-Manufacturing Technology, 2006, vol. 55 (2), pp. 667-696. 3. Rapaport D.C. The Art of Molecular Dynamics Simulation. Cambridge, Cambridge University Press, 2004. 4. Daw M., Baskes M. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Physical Review Letters, 1983, vol. 50 (17), p. 1285. 5. Duan X., Zhou B., Wen Y., Chen R., Zhou H., Shan B. Lattice inversion modified embedded atom method for bcc transition metals. Computational Materials Science, 2015, vol. 98, pp. 417-423. 6. Lee B.-J., Baskes M., Kim H., Koo Cho Y. Second nearest-neighbor modified embedded atom method potentials for bcc transition metals. Physical Review B, 2001, vol. 64 (18), p. 184102. 7. Lipnitskii A., Saveliev V. Development of n-body expansion interatomic potentials and its application for V. Computational Materials Science, 2016, vol. 121, pp. 67-78. 8. Savel'ev V.N., Lipnitskiy A.G. Novye mnogochastichnye potentsialy mezhatomnykh vzaimodeystviy dlya molekulyarno-dinamicheskogo modelirovaniya vol'frama [New multiparticle interatomic interaction potentials for molecular dynamics simulation of tungsten]. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Matematika. Fizika – Belgorod State University Scientific Bulletin. Mathematics. Physics, 2016, vol. 44, no. 20 (141), pp. 138-148. (In Russian). 9. Fellinger M.R. First Principles-Based Interatomic Potentials for Modeling the Body-Centered Cubic Metals V, Nb, Ta, Mo and W. Ohio, The Ohio State University, 2013. 10. Kresse G., Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, vol. 54, pp. 11169. 11. Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, vol. 77, p. 3865. 12. Blochl P.E. Projector augmented-wave method. Phys. Rev. B, 1994, vol. 50, p. 17953. 13. Kirkpatrick S., Gelatt C.D., Vecchi M.P. Optimization by simulated annealing. Science, 1983, vol. 220 (4598), pp. 671-680. 14. Kittel C. Introduction to Solid State Physics. New York, Wiley, 2005. 15. Roberge R. Lattice parameter of niobium between 4.2 and 300 K. Journal of the Less Common Metals, 1975, vol. 40 (1), pp. 161-164. 16. Simmons G., Wang H. et al. Single Crystal Elastic Constants and Calculated Aggregate Properties. Cambridge, 1971. 17. Pearson W. Handbook of Lattice Spacings and Structures of Metals and Alloys. London, Pergamon, 1967, vol. 2, p. 1192. 18. Touloukian Y., Kirby R., Taylor R., Desai P. Thermophysical Properties of Matter the TPRC Data Series. Vol. 12. Thermal Expansion Metallic Elements and Alloys. Texas, 1975. 19. Shah J.S., Straumanis M.E. Thermal expansion of tungsten at low temperatures. Journal of Applied Physics, 1971, vol. 42 (9), p. 3288. 20. Hixson R., Fritz J. Shock compression of tungsten and molybdenum. Journal of Applied Physics, 1992, vol. 71 (4), pp. 1721-1728. 21. Chijioke A.D., Nellis W., Silvera I.F. High-pressure equations of state of Al, Cu, Ta and W. Journal of Applied Physics, 2005, vol. 98 (7), p. 073526. 22. McQueen R., Marsh S., Taylor J., Fritz J., Carter W. The equation of state of solids from shock wave studies. High-velocity impact phenomena. New York, Acad. Press, 1970, p. 293. 23. Togo A., Tanaka I. First principles phonon calculations in materials science. Scr. Mater., 2015, vol. 108, p. 1. 24. Togo A., Oba F., Tanaka I. First-principles calculations of the ferro elastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Physical Review B, 2008, vol. 78 (13), p. 134106. 25. Woods A. Lattice dynamics of tantalum. Physical Review, 1964, vol. 136 (3A), p. 781. 26. Powell B., Martel P., Woods A. Lattice dynamics of niobium-molybdenum alloys. Physical Review, 1968, vol. 171 (3), p. 727. 27. Okoye C., Pal S. Lattice dynamics of molybdenum and tungsten. II Nuovo Cimento D, 1990, vol. 12 (7), p. 941. 28. Schultz H. Atomic Defects in Metals. Vol. 25. Landolt-Börnstein – Group III Condensed Matter. Berlin, Springer-Verlag, 1991. 29. Fellinger M.R., Park H., Wilkins J.W. Force-matched embedded-atom method potential for niobium. Physical Review B, 2010, vol. 81 (14), p. 144119. 30. Park H., Fellinger M., Lenosky T., Tipton W., Trinkle D., Rudin S., Woodward C., Wilkins J., Hennig R. Ab initio based empirical potential used to study the mechanical properties of molybdenum. Physical Review B, 2012, vol. 85 (21), p. 1. 31. Wang L., van de Walle A., Alfe D. Melting temperature of tungsten from two ab initio approaches. Physical Review B, 2011, vol. 84 (9), p. 1. 32. Dinsdale A. SGTE data for pure elements. Calphad, 1991, vol. 15 (4), p. 317.



Section of issue


Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.