Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article

Операторные включения Вольтерры в обобщенных моделях нейрополей с управлением. II


Получены условия разрешимости операторных включений Вольтерры и непрерывной зависимости решений от параметра. Результаты применены к исследованию обобщенных моделей нейрополей с управлением.


операторные включения Вольтерры; модели нейрополей; управление; существование решений; непрерывная зависимость от параметров

Full-text in one file





517.988.5, 51-76




1. Burlakov E.O. Volterra operator inclusions in the theory of generalized neural field models with control. I. // Tambov University Reports. Series: Natural and Technical Sciences. 2016. V. 21. № 6. P. 1950–1958. DOI: 10.20310/1810-0198-2016-21-6-1950-1958 2. Burlakov E., Zhukovskiy E., Ponosov A., Wyller J. On wellposedness of generalized neural field equations with delay, // Journal of Abstract Differential Equations and Applications 2015. V. 6. P. 51–80. 3. Burlakov E., Zhukovskiy E.S. Existence, uniqueness and continuous dependence on control of solutions to generalized neural field equations // Tambov Univeersity Reports. Series: Natural and Technical Sciences. 2015. V. 20. № 1. P. 9–16. 4. Taube J.S., Bassett J.P. Persistent neural activity in head direction cells // Cereb. Cortex. 2003. V. 13. P. 1162–1172. 5. Wang X-J. Synaptic reverberation underlying mnemonic persistent activity // Trends Neurosci. 2001. V. 24. P. 455–463. 6. Tass P.A. A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations // Biological cybernetics. 2003. V. 89. P. 81–88. 7. Suffczynski P., Kalitzin S., and Lopes Da Silva F.H. Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network // Neuroscience. 2004. V. 126. P. 467–484. 8. Kramer M.A., Lopour B.A., Kirsch H.E., and Szeri A.J. Bifurcation control of a seizing human cortex // Physical Review E. 2006. V. 73. № 4. P. 1–16. 9. Schiff S.J. Towards model-based control of Parkin- son’s disease // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010. V. 368. P. 2269–2308. 10. Ruths J., Taylor P., Dauwels J. Optimal Control of an Epileptic Neural Population Model. Proceedings of the International Federation of Automatic Control. Cape Town, 2014. 11. Borisovich Yu.G., Gelman B.D., Myshkis A.D., Obukhovskii V.V. Introduction to the Theory of Multivalued Maps and Differential Inclusions. 2nd ed. Moscow: Librokom, 2011.



Section of issue


Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.