Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article

ABOUT IMPLICIT DIFFERENTIAL INEQUALITIES WITH DEVIATING ARGUMENT

Annotation

Assertion about existence and evaluation of solutions to equations Yx, x =y , where the mapping Y acting in partially ordered spaces is covering by the first argument and antitone by the second argument is derived. This result is used for the proof of the Chaplygin’s type theorem on differential inequality with deviating argument.

Keywords

orderly covering mappings; differential equation with deviating argument; the Сauchy problem; Chaplygin’s type inequality

Full-text in one file

Download

DOI

10.20310/1810-0198-2017-22-3-571-578

UDC

517.922, 517.988.6

Pages

571-578

References

1. Chaplygin S.A. Osnovaniya novogo sposoba priblizhyonnogo integrirovaniya differencial’nyh uravnenij. M., 1919 (Sobranie sochinenij I. Gostekhizdat, 1948. S. 348–368). 2. Izbrannye trudy N.V. Azbeleva / otv. red. V.P. Maksimov, L.F. Rahmatullina. Moskva; Izhevsk: In-t komp’yuter. issled., 2012. 808 s. 3. Bulgakov A.I. O koleblemosti reshenij sistem differencial’nyh uravnenij vtorogo poryadka // Differencialnye uravneniya. 1987. Т. 23. № 2. S. 204–217. 4. Penkov V.B., Zhukovskaja T.V., Satalkina L.V. About solvability and solutions estimates for differential equation with delay depending on required function // Tambov University Review. Series: Natural and Technical Sciences. Tambov, 2011. V. 16. Iss. 3. P. 748–751. 5. Zhukovskiy E. S. Integral equations in spaces of symmetric functions // Differential Equations. 1982. V. 18. № 4. P. 580–584. 6. Zhukovskiy E. S. Volterra inequalities in function spaces // Sbornik: Mathematics. 2004. V. 195. № 9. P. 3–18. 7. Zhukovskiy E. S. On Ordered-Covering Mappings and Implicit Differential Inequalities // Differential Equations. 2016. V. 52. № 12. P. 1605–1621. 8. Zhukovskaya T.V., Zabrodskiy I.A., Serova I.D. On functional inequalities // Tambov University Review. Series: Natural and Technical Sciences. Tambov, 2016. V. 21. Iss. 6. P. 1963–1968. 9. Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. Coincidence points principle for mappings in partially ordered spaces // Topology and its Applications. 2015. V. 179. №1. P. 13–33. DOI: 10.1016/j.topol.2014.08.013 10. Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. Coincidence points principle for set-valued mappings in partially ordered spaces // Topology and its Applications. 2016. V. 201. P. 330–343. 11. Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. On coincidence points of mappings in partially ordered spaces // Doklady Mathematics. 2013. V. 453. №5. P. 475–478. 12. Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. Coincidence points of set-valued mappings in partially ordered spaces // Doklady Mathematics. 2013. V. 453. №6. P. 595–598. 13. Kollatc L. Funkcionalnii analiz i vichislitelnaya matematika. M.: Mir, 1969. 448 s. 14. Kolmogorov A.N., Fomin S.V. Elementi teorii funkcii i funkcionalnogo analiza. M.: Nauka, 1981. 544 s. 15. Borisovich Yu.G., Gelman B.D., Mishkis A.D., Obuhovskii V.V. Vvedenie v teoriyu mnogoznachnih otobrajenii i differencialnih vklyuchenii. M.: LIBROKOM, 2011. 224 s. 16. Danford N., Shvarc Dj. Lineinie operatori. T. 1. Obschaya teoriya. M.: IL, 1962. 896 s.

Received

2017-04-14

Section of issue

Functional-differential equations and inclusions and their applications to mathematical modeling

Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.