Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article

The thermal effect of laser radiation on myocardial tissue: a mathematical model

Annotation

Laser catheter surgery of the myocardium is currently used to restore normal rhythm and conduction of the heart, the disturbances of which are caused by Wolff-Parkinson-White syndrome. An optical fiber is inserted inside the heart chambers and laser radiation is applied to abnormal arrhythmogenic tissues. A mathematical thermal model of such a laser action allowing to optimize exposure parameters and select the emitter design, depending on the specific features of each patient’s pathology is developed. Distribution of temperature was modeled on the basis of the heat conductivity equation. Arrhenius model was used to describe the thermal damage to biological tissues. The three-dimensional geometric model is calculated using the COMSOL Multiphysics software package. Verification of the mathematical model agrees with the results of former experiments within the measurement errors and allows calculating the required radiation dose to obtain the corresponding therapeutic effect.

Keywords

mathematical model; laser coagulation; laser surgery; cardiac arrhythmogenic structures; thermal mechanism of biotissues damage

Full-text in one file

Download

DOI

10.20310/1810-0198-2017-22-5-1115-1120

UDC

621.373.826: 90.27.39

Pages

1115-1120

References

1. Ardashev A.V., Rybachenko M.S., Zhelyakov Ye.G., Shavarov A.A., Voloshko S.V. Sindrom Vol'fa–Parkinsona–Uayta: klassifikatsiya, klinicheskiye proyavleniya, diagnostika i lecheniye [Wolff–Parkinson–White syndrome: classification, clinical manifestations, diagnosis and treatment]. Kardiologiya – Cardiology, 2009, no. 10, pp. 77-87. (In Russian). 2. Liong Bing Liem, Downar E. (eds.). Progress in Catheter Ablation: Clinical Application of New Mapping and Ablation Technology (Developments in Cardiovascular Medicine). Dordrecht, Springer, 2002, 590 p. 3. Weber H.P., Sagerer-Gerhardt M. Open-irrigated laser catheter ablation: relationship between the level of energy, myocardial thickness, and collateral damages in a dog model. Europace, 2013, no. 16, pp. 142-148. 4. Weber H.P. The RytmoCath description slides. LasCor GmbH Laser – Medizintechnik. Available at: http://www.las- cor.de/lascor/RytmoCath/slides/ppframe.htm (accessed 29.05.2017). 5. Weber H.P., Heinze A., Hauptmann G. In vivo temperature measurement during transcatheter endomyocardial Nd-YAG laser irradiation in dogs. Lasers in Medical Science, 1997, no. 12, pp. 352-356. 6. Kulikova I.V., Malyukov S.P., Brostilov S.A. Modelirovaniye teplovogo vozdeystviya lazernogo izlucheniya na biologicheskiye tkani [Modeling the thermal effect of laser radiation on biological tissues]. Fundamental'nyye issledovaniya – Fundamental Research, 2012, no. 11 (2), pp. 425-429. (In Russian). Available at: https://fundamental-research.ru/ru/article/view?id=30551 (accessed 29.05.2017). 7. Splinter R., Semenov S.Y., Nanney G. Myocardial heat distribution under Nd: YAG laser irradiation in vitro and in vivo situations: theory and experiment. Applied Optics, 1995, no. 3, pp. 391-399. 8. Splinter R., Svenson R.H., Littmann L. Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength. Lasers in Surgery and Medicine, 1991, no. 11, pp. 117-124. 9. Mohammed Y., Verhey J.F. A finite element method model to simulate laser interstitial thermotherapy in anatomical inhomogeneous regions. BioMedical Engineering OnLine, 2005, vol. 4 (2). DOI: 10.1186/1475-925X-4-2. Available at: http://www.biomedical-engineering-online.com/content/4/1/2 (accessed 29.06.2017). 10. Yang S.T., Matthews M.J., Elhadj S. Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica. Applied Optics, 2010, no. 14, pp. 2606-2616. 11. Marqa M.F., Colin P., Nevoux P., Mordon S., Betrouni N. Laser Interstitial Thermo Therapy (LITT) for Prostate Cancer Animal Model: Numerical Simulation of Temperature and Damage Distribution. Proceedings of the COMSOL Conference. Paris, 2010. Available at: www.comsol.com/paper/8230 (accessed 29.05.2017). 12. Niemz M.H. Laser-Tissue Interactions. Fundamentals and Applications. 3rd enlarged edition. Berlin, Heidelberg, Springer-Verlag, 2007, 305 p.

Received

2017-07-17

Section of issue

Scientific articles

Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.